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0. Introduction. Many statistical estimation problems possess certain natural 
symmetries. The location parameter estimation problem is an important ex- 
ample. It is symmetric, or, to use the usual terminology, invariant with respect 
to translations of the sample space. This strongly suggests that the statistician 
should use an estimation procedure which also has the property of being in- 
variant. 

Until recently it seemed reasonable to expect that the best invariant estimator 
is a "good" estimator. In particular, it seemed reasonable to expect that it is 
admissible-that is, that no other estimator has a risk which is never larger and 
is sometimes smaller than the risk of the best invariant estimator. However, 
Stein (1956) gave an example of a very simple problem in which the best in- 
variant estimator is inadmissible. Previously several authors had proven ad- 
missibility in different problems, and there has been much research in the area 
since then. Several references are contained in the bibliography of this paper. 
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The published results of C. Stein [Stein (1956), (1959), (1960)] are limited to 
the case where the loss function is the square of the distance between the esti- 
mate and the true parameter value. With minor restrictions on the probability 
densities involved he proved admissibility of the best invariant estimator if the 
location parameter is one or two dimensional, and he proved its inadmissibility 
if the location parameter is of dimension three or greater. 

Primarily because of its mathematical simplicity, the loss function considered 
by Stein is the one traditionally used in such problems; see, for instance, Cramer 
(1946), p. 179, p. 473. However, there are many other loss functions which it is 
quite reasonable to use; for example, the distance between the estimate and the 
true value. It is natural to ask whether the dichotomy observed by Stein, with 
dividing line between two and three dimensions, depends on the choice of the loss 
function. 

At the same time the question of admissibility can be generalized from a fixed 
sample size problem to a sequential problem. Such a generalization has been 
occasionally considered in the past but results have been obtained only in very 
special cases. 

In this paper we consider both the fixed sample size and sequential problems 
for a one-dimensional or a three or higher dimensional location parameter, and 
make very few restrictions on the distribution of the random variables involved 
or on the loss function. A paper dealing in similar generality with the two di- 
mensional case is now in preparation. (If the reader desires, the results in the 
three dimensional case may be read after Section 1.1, which contains the neces- 
sary definitions. Section three of the paper is logically independent of Section 
two.) 

It is shown here that for the most part the dichotomy between three or more 
dimensional cases and fewer than three dimensional cases persists. There are a 
few minor exceptions; see Sections 2.4 and 3.2 of this paper, and also the proof 
in Farrell (1964) that if the best invariant estimator is not uniquely deter- 
mined (almost everywhere) then it is inadmissible. 

It is tempting to regard these exceptions as being very minor and to conjecture 
that admissibility of the best invariant estimator in any problem is primarily a 
property of the sample space and the group of symmetries which acts upon it. 
However, one should bear in mind that, at least when nuisance parameters are 
present, the situation is not so simple. Blackwell (1951) and Stein (1960), p. 
375, point out an example of a problem in which the best invariant estimator is 
admissible when its form would be independent of the value of the nuisance 
parameters if these values were known, but in which it is inadmissible in some 
cases where its form if the value of the nuisance parameters were known is 
dependent on the value of those parameters. We have an example (which will 
appear elsewhere) of an estimation problem in which the form of the best in- 
variant estimator remains the same independently of any knowledge concerning 
the value of the nuisance parameters, and in which that estimator is sometimes 
admissible and sometimes inadmissible, depending on the variance-covariance 
matrix of the observed random variables (which is assumed to be known). 
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The main theorems of this paper are Theorems 2.1.1, 3.1.1, 3.3.1, and 3.3.2. 
We have tried to state the assumptions of these theorems in as widely applicable 
and as weak a form as is consistent with their being meaningful and manageable. 
Where it is necessary, lemmas have been stated and proved which interpret the 
assumptions of the main theorems in a wide variety of standard statistical situa- 
tions. If the reader wishes, these lemmas (in Sections 2.2, 2.3, and 3.2) may be 
read before the proofs of the main theorems. 

Stating the theorems in this way, of course, emphasizes the uniformity of the 
dichotomy mentioned previously. More importantly, we hope it will enable the 
essential nature of the theorems and their proofs to be more easily and more 
clearly understood. 

1. Preliminaries. 1.1 General notation. We first give the notation for the general 
problem which is considered in Sections 2 and 3. In Section 1.2 it is shown how 
this general problem is related to other more specialized problems which are also 
considered in various parts of Chapters 2 and 3; and some simple observations 
are made concerning the formulation of the general problem. 

Let H = Em x Em x ... (Em denotes m-dimensional Euclidean space). Let 
(ai be the o-field of subsets of H which are Lebesgue cylinder sets on the ith m-di- 
mensional co-ordinate subspace of H. Let G(n) = ( U W=, (ti) where 63(() denotes 
the smallest a- field containing C. Let X, Y1, Y2, * * be a random variable on 
H, () such that X (which takes values in Em) is measurable with respect to 
(t1, and Yi (which also takes values in Em) is measurable with respect to 
(t+1, i = 1, 2, . . Denote the values taken on by X, Y1, Y2, ... as 
X, Yl, Y2), 

Let Y = Y1, Y2, and 0 E Em. If S E (X(n) assume 

(1.1.1) Pr {(X, Y) ES} = f J'spn(x - 0, y) dx,u(dy), 

where fEm pn (X, y) dx = 1 for almost all y (,). In (1.1.1) , is a probability meas- 
ure with respect to the field 63( U'=2 (t), pn(X, y), the conditional probability 
density of X given the value Yi, Y2, * * *, Yn-1 of Y is measurable with respect to 
(i (n) and f dx represents integration with respect to Lebesgue measure. Thus we 
assume throughout that the conditional distribution of X given Y1, Y2, * * *, Yn, 1 
is absolutely continuous with respect to Lebesgue measure a.e. (,u). It is not assumed 
that the distribution of X given Y1, Y2, * * * is absolutely continuous with respect 
to Lebesgue measure. Nevertheless that distribution will be treated in some ways 
as if it were absolutely continuous. The reason this can be done is contained in the 
following paragraph. 

Let r(S, Y) denote the conditional probability that X E S given Y, and 0 = 0. 
Let g: H -* E1. g will be called finitely measurable (with respect to wT ,u) if for 
any E > 0 there is an n < oo and an (a (n) measurable set S c H such that 
fr(S, y),(dy) > 1 - E and g restricted to S(g I S) is measurable with respect 
to (i (n) I S. If g > 0 is finitely measurable then there exists Si c S2 C ... c H 
such that f w(Sn , y),(dy) -* 1 as n -* o and 9 I Sn is measurable with respect 
to (i (n) I Sn . Thus if g > 0 is finitely measurable define 
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(1.1.2) f f g(x, y)p(x, y) dxAu(dy) = lim.f fg fSng(X, Y)Pn(x, y) dx,u(dy) 

= f f g(x, y)>r(dx, y)g(dy) < oo, 

where {Sn} is defined above. (It can be verified that the limit in (1.1.2) always 
exists.) It is easy to check using (1.1.2) that, so long as the function g is finitely 
integrable, the notational device, p, may be treated as a probability density when 
one wishes to make a change of variable (as in (2.1.6)) or break up the region 
of integration in (1.1.2) into several parts (as in (2.1.7)). This restriction to 
finitely measurable functions for g will cause little difficulty in what follows. 
If A c (a0', it is called finitely measurable if its indicator function is finitely 
measurable. 

In (1.1.1) 0 E Em is an unknown parameter. The statistical problem to be 
considered in this paper is the estimation of 0 when the observations X, Y1, 
Y2 * ... become available sequentially, one after the other. 

An estimation procedure, 5, consists of two measurable functions, an estimator e 

and a stopping rule a-. o- = n is interpreted to mean that the sequential sampling 
stops after observing the n variables X, Y1, Y2, * .. Yn_- . The estimate e of 
Oisthenmade. Thuse:H -+Emanda:H -+J* (J* = {O, 1, 2, ..., oo}). The 
intuitive requirement that both the stopping rule and the estimate depend only 
on past observations is the motivation for the following assumption: For all 
Lebesgue measurable A c Em, 

(1.1.3) {x, y: a(x, y) =n, E(x, y) E A} E a('a. 

If for some x, y, o-(x, y) = 0, (1.1.3) is interpreted to mean that, for all x, y, 
a(x, y) = 0 and that E(x, y) is a constant. (See Section 1.3 for comments con- 
cerning the extension of this definition to allow the use of "randomized" estima- 
tion procedures.) 

The loss functions considered in this paper may depend on three things: the 
difference between e and the true value of 0, a-, and the values Yi, Y2, 
Formally, a loss function is a Borel measurable function W: Em x J* x 
(Em x Em x ... ) * * El* (El* = E1 u { o }). It will always be assumed that 
W(t, n, y) is a(') measurable (thus if o- stops with probability one the function 
W(e(x, y), o(x, y), y) is finitely measurable). Assume also, 

(1.1.4) O-< W ? oo and W(t, oo, y) = oo. 

Note that there are very few practical statistical problems in which the depend- 
ence on y actually occurs. For that reason wxe shall often pay special attention to 
the case where W is independent of y. 

The risk, R(0, 5), of a procedure a havingo < oo a.e. (ir*,u) when 0 is the true 
parameter value is 

(1.1.5) R(G, 5) = f f W(E(x, y) - 0, a (x, y), y)p(x - 0, y) dx,u(dy). 

Since we will usually write y(x, y) = E(x, y) - x (and even a = (ay, ) when no 
confusion can occur) (1.1.5) often appears in the form 
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(1.1.5') R(0, 5) = f f W(z + y(z + 0, y), a(z + 0, y), y)p(z, y) dz,u(dy). 

Since E and a* are ineasurable and W is Borel measurable the integrands in 
(1.1.5) and (1.1.5') are measurable. The integrals in (1.1.5) and (1.1.5') are 
well defined (see (1.1.2)) only if a < co (ir ,u), however, if a < co a.e. then 
R (if we define it properly and use (1.1.4)) is infinite and so the procedure with 
the stopping rule a is of no interest to us. Thus we define R(0, 6) = oo if the 
integrand in (1.1.5) is not finitely integrable. 

In accordance with the usual terminology an estimation procedure is (transla- 
tion) invariant if 

( 1.1.6) E(x, y) = x + y(y), 

a(X, y) = (Y), 

(i.e. a and y do not depend on x. Observe that this definition and (1.1.3) imply 
a- > 1 for all invariant procedures). Note from (1.1.5') that if a is invariant R(0, 5) 
= R(a) (say) is independent of 0. 

Let t be the class of invariant estimation procedures. Unless otherwise stated 
it is assumed throughout that there exists at least one procedure 5o E 9 such that 

(1.1.7) Ro= R(bo) = infa,5gR(a). 

The procedure 5o is called a best invariant estimator (best inv est). Note that 60 
is not necessarily uniquely determined. The symbols Ro and 5o (= (Eo, 70), or as 
will sometimes be written, (-yo, 2o)) are always used as in (1.1.7). (See Section 
1.2 and Lemma 2.2.1 for some results concerning the existence of 0.o) 

Unless otherwise stated it is assumed that 

(1.1.8) Ro < oo.- 

An estimation procedure is called admissible (or admissible within the set 
8, respectively) if for any procedure 5' (6' E 8, respectively) 

(1.1.9) R(0, 5') < R(0, 5) for all 0 EE.. 

implies R(0, 6') = R(0, 5) for all 0 E Em . 

An estimation procedure a is called almost admissible (with respect to Lebesgue 
measure) if 

(1.1.10) R(0, b5) < R(0, 5) for all 0 E Er 

implies R(0, 6') = R(0, 5) for almost all 0tEm( dO). 

The definitions stated above are sufficiently general to allow consideration of 
problems which have a fixed-sample-size, and are not at all sequential. Thus, 
a fixed-sample-size problem is one in which 

(1.1.11) W(t, j, y) = W(t, y), j =n, 

= 00 , j n, 
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and where (for simplicity) W(t, y) is a (n) measurable. If W is given by (1.1.11) 
then for every (sequential) 8 for which a u n there is a 8' with a- = n such that 
R(0, 6') < R(0, 8) for all 0. Thus in looking for admissible procedures it is enough 
to look only at procedures which always observe X, Y1, ***, Yn-, and stop. 
For this reason it will be assumed that a = n in fixed-sample-size problems, and 
aT will not be mentioned in the notation. In this way 8 consists merely of an es- 
timator E (or -y, where E(x, y) = x + y(x, y)), and e (or e) is aX(n) measurable. 
Thus in the fixed-sample-size-case variables Yn , Yn+i , ... may be completely 
ignored, and this is the approach we shall take. Let us also point out that the 
restriction that Yi take its values in Em (rather than some other space) is not 
essential for the argument in any part of this paper. 

1.2. Comments concerning the general problem; specializations and generaliza- 
tions. This section begins with a description of a statistical problem which will 
be referred to in this paper (for want of a better name) as the special-sequential- 
problem. It is shown that this problem is truly a special case of the general problem 
described in Section 1.1. 

Suppose the experimenter may observe the independent identically distributed 
random variables X, X2, X3 X ... (Xi E E.) in sequence. Each Xi has the prob- 
ability density f(x - 0) with respect to Lebesgue measure on Em . After observing 
Xl *... , Xn the experimenter may choose either to stop and make an estimate 
(based on xi, * *, xn) of the unknown parameter, 0 E Em, or he may choose to 
observe Xn+l, If he stops and makes the estimate e, his loss is W(E- 0, n). 
A (non-randomized) translation invariant estimation procedure in this case is 
one in which the stopping rule depends only on the maximal invariant statistic, 
(X2 - X I X3 - Xl , ...), and the estimate is of the form E(x1, x2, * ... ) =x1+ 

7 (X2-X1 X3 - x * * * ) (certain requirements analogous to (1.1.3) must also 
be satisfied by the stopping rule, a, and by e). 

To exhibit the equivalence of this problem to that formulated in Section 1.1, 
let X = X1, Yi = X+,- X1. Let 

Pn(X, Y) = f(X)f(Yl + X)f(Y2 + x) ... f(Yn-1 + x) 

(1.2.1) /jff(x)f(Yl + x)f(y2 + x) ... f(yn1 + x) dx; 

An (dy) f(jf(X)f(YI + X)f(Y2 + x) ... f(yn-1 + x)dx) ITi:='l1 dyi . 

It is easily checked that if 0 is the true value of the parameter and Au(S) = 

limnoo An(S) then pn(X - 0, y) satisfies (1.1.1). An invariant procedure in this 
X, Y, problem is of the form (1.1.6) and the risk is of the form (1.1.5). The risk 
of a procedure in the special problem is equal to the risk of the corresponding 
procedure in the general problem. Thus the special problem falls into the frame- 
work of the general problem of Section 1.1 where X, Y and pn(X, y) are defined 
as above. 

We now turn to a different matter. In the fixed sample-size-problem the trans- 
formation X -* X + g( Y) (g measurable) does not change the essential nature 
of the problem in any way. That is; the risk of the estimator E(x, y) on the basis 
of X, Y having density p (x - 0, y) equals the risk of the estimator E(x'- g(y), y) 
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= E(x', y) for 0 on the basis of X', Y (where x' = x + g(y)) having density 
p(x' - g(y) - 0, y) = p'(x' - 0, y). The above can easily be checked using 
(1.1.5). If g(y) = yo(y) then in the transformed problem Eo'(x', y) = 

Eo(x' - g(y), y) = x - yo(y) + yo(y) = x'. Thus in the transformed problem 
a best inv est is given by X', i.e., yo'(y) = 0. The above shows that there is no 
loss of generality in assuming that yo(y) 0 in every fixed-sample-size problem. 
We shall often assume in fixed-sample-size problems that -yo = 0 (throughout 
Section 3 this assumption will be made). 

The reader will notice that although the essential nature of a fixed-sample-size 
problem remains unchanged by the transformation X -* X + g(Y), some of 
the assumptions in the following chapters about finiteness of moments are satisfied 
only for certain choices of g(Y). (Often g(y) = yo(y) is a good choice.) For 
example it may be that while the assumptions (2.1.2) or (2.1.3) of Theorem 
2.1.1 are not satisfied for some problem they will be satisfied for a problem 
equivalent in the above sense, and thus 5o will be admissible for the original prob- 
lem as well as for the problem in its transformed form. 

In the general sequential problem the variety of transformations which leave 
the problem unchanged in the above sense is limited by the restriction (1.1.3). 
In general, the only such transformations are x -* x + k where k is some con- 
stant, k E Em . The same remarks as above apply: 5o may sometimes be proved 
admissible using Theorem 2.1.1 by applying that theorem to the transformed 
problem. 

We will conclude this section with two remarks concerning possible generaliza- 
tions of the theorems of this paper. 

First, a more general method of sequential sampling is possible. Namely, 
after observing X, Y1, Y2, ... , Yn_1 the experimenter may stop sampling and 
make an estimate or he may decide to continue sampling by observing Yn a Yn+i a 
... , Yn+k all at once. The choice of k is up to the experimenter, and may depend 
on X, Y1, ... , Y. . In this case the sampling rule a contains the information 
on how to continue sampling, as well as on when to stop. This can most easily 
be accomplished by letting a: Em x Em x * * * . J,* x Ji* x ... where, for 

example o(x, y) = 1, 2, 0, 0, 0, ... means that first X was observed, and then 
Yl, Y2 were observed together, and then an estimate was made. Certain require- 
ments generalizing (1.1.3) must be made on E and a. See Kiefer (1957) for a 
complete definition of this type of problem. The theorems and lemmas of Sections 
2.1, 2.2, and 2.3 remain valid with several minor changes (mostly in the notation). 
For instance, in Lemma 2.3.4 it should be assumed that the cost of any group of 
observations is greater than c > 0, instead of merely assuming that each ob- 
servation costs more than c > 0. 

A second possible generalization is to drop the requirement that the distribu- 
tion of X given Y1, Y2, ... , Y. be absolutely continuous with respect to Lebesgue 
measure (in this case the density p(x, y) dx should be replaced by the distribu- 
tion dP(x, y). The results of Section 3 are almost unaltered by this change- 
see Corollary 3.1.2. On the other hand if this requirement of absolute continuity 
is dropped, it is in general at most possible to conclude almost admissibility of 
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60 in Theorem 2.1.1. In fact, subject to some minor additional regularity condi- 
tions the method of proof used in Theorem 2.1.1 can actually be extended to prove 
almost admissibility of 5o . The way to proceed is to everywhere replace p(z, y) dz 
by d. P(z, y). 

1.3. Randomized estimators. It should be noted that in the formulation of the 
problem in Section 1.1 no explicit provision was made to allow the use of ran- 
domized estimators; that is, estimators which depend on the value of Z, a random 
variable (independent of X, Y) having uniform distribution on (0, 1), as well 
as on the sequentially observed values of X, Y. (For rigorous definitions of all 
the concepts involved in a randomized problem see Kiefer (1957).) Randomiza- 
tion after observing X can easily be introduced into the formulation of Section 
1.1. If the original problem consisted of sampling from X, Y1, Y2, * * * and has 
loss function W, construct a new (randomization-allowing) problem which con- 
sists of sampling from X, Y1', Y2', ... where Y1' = Z, Y'+1 = Yi, i = 1, 2, 
and which has loss function W'(t, n, y') = W(t, n - 1, (Y2', Y3%, **)) for n > 2 
and W'(t, 1, y') = W(t, 1, (Y2', Y3, ... )). In this new problem, Z may be sampled 
without cost after the observation of X. An estimator for the new problem is a 
randomized estimator for the original problem, but one in which randomization 
is not introduced until after X has been observed. 

It may easily be checked that for any randomized invariant estimator, ir, 
there is a non-randomized invariant estimator a such that R( ) _< R(6,), (see 
Blackwell and Girshick (1954), p. 312). It follows that (when the terms used for 
the randomized problem are properly defined) if a randomized best inv est exists, 
then also a non-randomized best inv est exists. Thus the introduction of ran- 
domization does not change the existence of a best inv est. 

It can also be easily checked that the hypotheses of Theorem 2.1.1 are satisfied 
for some problem if and only if they are satisfied for the randomization allowing 
problem as defined previously. A best inv est is the same for the two problems. 
Thus if the hypotheses of Theorem 2.1.1 are satisfied the best inv est is admissible 
even among estimators allowing randomization after the observation of X. 

In unusual cases the best inv est may be admissible among non-randomized 
estimators (or among randomized estimators which observe at least X), but 
may not be admissible among the class of all randomized estimators. The following 
is an example: 

Let, forn = 1,2,2 

(1.3.1) pn(X, y) = 1, 2j < X < 2, 

= 0, otherwise, 

and let W(t, n, y) = Wi(t) + n where 

W(t)= 0, t 21 2 

(1.3.2) =3 2 < Itl <- 
= 2,It 2 
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It can easily be checked that the assumptions of Theorem 2.1.1 are satisfied 
so that the best inv est is admissible among the class of estimators allowing 
randomization after the observation of X. The best inv est has risk R0 = 1. 
The procedure, 31, which makes the estimates -3, 0, 3 each with probability 3, 

respectively without observing the value of X has risk 

R(0, i) - 1, I01 '- 11 

=W a 101 < ,T9 

31 101=, 

(1.3.3) = -, 2 < 

= , 101 = 2, 

= 
. 1 

< 101 < 3 

= 3, 0< 101 < 2 

Thus R(0, c1) < Ro so that 31 is a better procedure than 3o 
We leave it to the reader to check that if sup Wi(t) = oo and Ro < oo, or if 

lim inf t, Wi(t) > Ro or lim inft_0 W1(t) > Ro; then no randomized proce- 
dure, 5, for which a = 0 with positive probability, can be better than ao (in the 
sense that R(0, t) _ Ro for all 0). Thus in these cases if the hypotheses of Theorem 
2.1.1 are satisfied So is admissible among the class of all randomized estimators. 

In fixed-sample-size problems the above difficulty is, of course, not present. 
There the randomization allowing problem as defined at the beginning of this 
section allows all randomized estimators for consideration. 

2. Estimation of real location parameters. 

2.1. Admissibility of the best invariant estimator for m = 1. The general re- 
sult given in this section depends in part on the following two assumptions: 

(2.1.1) R(3i) -+ Ro0, aei , i = 1, 2, ... , implies 

(a) ei(x, y) -> x + yo(y) (or ay(y) -* yo(y)) in measure (with respect to ,u), 

and 

(b) oi (y) e'uo(y) in measure (,u), 

and 

(2.1.2) fo dX{Isupa=( fA)e f ,u(dy) fiX [W(x + 'yo(y), ao(y), y) 

-W(x + y(y), a(y), y)]p(x, y) dx} < oo. 

(The quantity in braces in (2.1.2) is the difference of two monotone functions, 
hence is measurable (dX).) 

Neither of these conditions is very restrictive, but neither is vacuous. Some 
more easily verified assumptions which imply (2.1.1) and (2.1.2) are given in 
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Sections 2.2 and 2.3 respectively. The reader may read these lemmas before 
Theorem 2.1.1 if he desires. 

The statement and proof of Theorem 2.1.1 partially parallels the statement 
and proof of a much more specialized result given by Blackwell (1951). Where 
Blackwell used finite discrete probability distributions and finite summations 
we use probability densities and integrals over infinite regions. As is usual in 
such cases Blackwell's convergence has of necessity been replaced by convergence 
a.e. or convergence in measure. This replacement causes difficulties that were, 
of course, not present in Blackwell's proof. In addition the replacement of finite 
sums by integrals over the real line has required the assumption that certain 
moments of p exist. The existence of these moments is used in the proof to show 
that certain error terms which occur are 0(1) or o(1) (as L ->oo ), whichever is 
necessary for the argument. 

In Section 2.4 some examples will be given to show that at least some of the 
moment conditions assumed in Theorem 2.3.1 are necessary in order for the best 
invariant estimator to be admissible. Let 8 be the set of estimation procedures 
which take at least one observation. 

THEOREM 2.1.1. In the problem defined in Section 1.1, let m = 1 (i.e. X a real 
random variable), Ro < ?o . Suppose assumptions (2.1.1) and (2.1.2) are satisfied, 
and 

(2.1.3) f Au(dy) f xW(x + 70o(y), oo(y), y)|p(x, y) dx < oo. 

Then the best invariant estimation procedure, bo, is admissible in the set 81 . If 
supt infy W(t, 0, y) > Ro then bo is admissible. 

PROOF. Suppose there exists an estimator 6, a E 8i, such that R(0, t) < Ro. 
We shall show that a is equivalent to o0, i.e., 

(2.1.4) rf ,(dy) f [Ico(x, y) - E((x, y) + I o(Y) - o-(x, y)I] dx = 0. 

For a a satisfying R(O, 6) a< Ro 

(2.1.5) J-L dO f (dy) f [W (o(x, y) 0, (y), y) 

- W(e(x, y) - 0, a(x, y), y)]p(x - 0, y) dx ? 0. 

Since W > 0 and R(0, t) < Ro the order of integration in (2.1.5) may be 
changed. Suppose this is done so that the 0 integration is performed first, x - z 
is substituted for 0, and e(x, y) is replaced by x + y(x, y) and eo(x, y) by x + 
7yo(y). Then (2.1.5) becomes 

(2.1.6) f A (dy) f X dx fx-L [W(z + 'yo(y), oo(y), Y) 

- W(z + 'y(x, y), o(x, y), y)]p(z, y) dz > 0. 

(Since W > 0 and R(0, t) _ Ro the order of integration in (2.1.6) is immaterial. 
When it is convenient that order will be changed without further justification.) 

The range of integration in (2.1.6) can be broken up as 
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(2.1.7) J g(dy) f dx x-L dz = J 4(dy) {JL /2 dx fJ-L/2 dz + J-3L/2 dx {f-L/2 dz 

? L/2 dx f-L dz + '_L/2 dz fX- dx + f -co dz f dx} 

(Note the change of order of integration in the last two terms.) 
Using (2.1.3), 

f (dy) fI0' dz J~1dx ? J"/ dZ 0 dx} f 8( y {f 00cZ fz-L d L /2 (tZ z-Ldx} 

[W(z + yo(y), ao(y), y) - W(z + y(x, y), o-(x, y), y)jp(z, y) 

?< f A (dy)>{fIO' dz Jz-i dx + fL/2 dz f z-Ldx} 

(2.1.8) *W(z + yo(y), 0-o(y), y)p(z, y) 

= 2L f it(dy) fIzI>L/2 W(z + yo(y), ao(y), y)p(z, y) dz 

? 4 f p(dy) f Iz>L/2 IZJW(Z + yo(y), ao(y), y)p(z, y) dz 

0 as L->oo. 

For conivenience, let 

(2.1.9) co(z, yo, co, 77 0, y) = W(z + yo, o, y) - W(z + 'y , y); 

C (z, x, y) = co(Z 'yo(y), Co(y), y(X, y), o-(X, y), y). 

If supt inf, W(t, 0, y) > Ro > R(0, 6) then o- ? 1 (see after (1.1.3)). Other- 
wise t - S1 by assumption. Hence we may assume be 81 . 

For any fixed x0 define the estimation procedure 6, by the estimator and stop- 
ping rule x + E(xo, y) - x0, o-(xo, y) considered as functions of y for that fixed 
xo . It is easily checked, using the fact that a- > 1, that bx0 is an invariant estima- 
tion procedure; i.e., &xo e i. Using (2.1.2) and (2.1.3), 

f A(dy) f-3L/2 dx frL/2 C(zO x y)p(z, y) dz 

= f/t(dy) { fj L/2dx fL/2dz + fo'2dx f-L/2dz + f&'2dx f 
x 

xdz} 

.W(z, yo(y), o-o(y), y(x - L, y), o-(x - L, y), y)p(z, y) dz 

< 2 j7u(dy) f fL/2 JZIW(Z + zyo(y), o-o(y), y)p(z, y) dz 

? f2dx f A(dy) f _X (z, 'yo(y), a-o(y), 'y(x - L, y), 

( 1(x - L, y), y)p(z, y) dz 

< 2 f 4u(dy) f Jx IzIW(z + zyo(y'), o-o(y), y)p(z, y) dz 

+ .0f dxl sup8s f jt(dy) 

f2 c(z, yo (y), ao (y), y(y), cr(y), y)p(z, y)dz} 

< Ci (ci is some constant, independent of L). 

A similar result holds for the third term on the right in (2.1.7). Combining 
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the inequality (2.1.6) with (2.1.7), (2.1.8), and (2.1.10) there is a constant 
c2 ( > 2c1) such that 

(2.1.11) f p~(dy) r-L/2 dx f-L/2 J(Z, X, Y)P(Z, Y) dz ? -c2. 

Since the integral in (2.1.2) is finite there exists a sequence Xi -* oo such that 
the quantity in braces ({ } ) in that integral tends to 0 like o(Xi-') (as i -*>) . 
Hence if k is any fixed integer, 

lim infi0 f Xi dx f /(dy) f-xX c(z, x, y)p(z, y) dz 

_ lim infi0 {J7Lkxk dx f A (dy) .f?i'1 C-(z, x, y)p(z, y) dz 

?2..12 +f dx{5 sup,,eg f (dy) f cx (z, yo(y), co(y), y'(y), o'(y), y) 

p(z, y) dz}} 

= lim infi,0 f Xk dx J /(dy) f X Co(z, x, y)p(z, y) dz 

= J7kxk dx f 4 (dy) fr C-(z, x, y)p(z, y) dz. 

(Again we have used the fact that for all fixed values of x, Ax(y) e t.) Since the 
choice of k in (2.1.12) is arbitrary, 

(2.1.13) lim infx,0 fr dx f /(dy) f C(z, x, y)p(z, y) dz 

<- dx{J f(dy) f C(z, x, y)p(z, y) dz} 
The braces in (2.1.13) have been added to emphasize that the order of integra- 
tion on the right of (2.1.13) cannot be changed. 

The bulk of the remainder of the proof is devoted to establishing the result in 
Equation (2.1.24). First we derive the result in (2.1.18), and then this result and 
Lemma 2.1.1 are applied to the second and third terms on the right of the in- 
tegral decomposition in (2.1.7), in order to prove (2.1.24). 

For any fixed a > 0, A > 0 define 

(2.1.14) S(L) = {x, y: -L - A < x < -L + A, and either 

zy(x, y) - zyo(y) I > ca or o(x, y) #o 
o-(y)}. 

Let f1 > 0 be given. Just for this paragraph define T(L) = {x: ,u{y: (x, y) E S(L)} 
> f1/4A}. We note that if for some L, ,ffS(L) A(dy) dx > ,3i, then 

(2.1.15) 2 fT(L) dx ? /3 . 

Let T = UL>O T(L). It follows from the definition of T(L) and T that there 
does not exist a sequence {xi} such that xi E T and &x -- 6o (i.e. y(xi , y) --+'yo(y) 
and o(xi, y) -* ao(y)). Hence, using (2.1.1) there is a /32 > 0 such that x E T 
implies 

(2U1i16) (. (dy) (2-) (za yo(d ) X (2), y (x y) a (x, y), y) p(z, y) dz <-02 

Using (2.1.11), (2.1.13), and (2.1.15), 
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(2.1.17) -C2 ? f-odx{If (dy) ,f c(z, yo (y), oo (y),y(x, y), 

cr(x, y), y) p(z, y) dz} ? - /32 fT dx. 

Thus fT dx < C2/f2 . This implies the existence of an L* such that ILI > L* 
implies fT(L) dx < i1/2 which, using (2.1.15), implies ffS(L) A(dy) dx ? 01. 
Hence, 

(2.1.18) ffS(L)(dy) dx -> as L - oo. 

At this point the following simple lemma is needed. 
LEMMA 2.1.1. Supposef, g are Lebesgue measurable, g _ 0, and f g(z) dz < oo. 

Then ai -> a, implies f(z + ai) -> f(z + a) in measure (with respect to the measure 
generated by 9g(z) dz). If, furthermore, f _ 0 and f f(z + a)g(z) dz < x , then 

(2.1.19) lim SUpaj, a (SUpQ fQ Uf(z + a) -f(z + ai)]g(z) dz) < 0. 

PROOF. If R c (- oo, oo) definefRc = {x:xftR} and R - b = {x: x + 
b e R}. Using Lusin's theorem and absolute continuity, for any a > 0 there is a 
(closed, bounded) set R such that JRc g(z) dz < a, f is uniformly continuous on 
R, and for all i, f Rc+(ai-a) g(z) dz < a. If i is chosen sufficiently large, ai -al 
will be small enough so that If(z + ai) - f(z + a)I < a for all 

z e S = {z: (z + a) e R, and (z + ai) e R}. 

fSc g(z) dz < 2a. Thus f(z + ai) -> f(z + a) in measure. (2.1.19) follows from 
Fatou's lemma, and positivity and integrability of f. This completes the proof of 
the lemma. 

Using (2.1.19) for almost all y(,u), 

(2.1.20) lim sup^.o 0(,) (supx1,x2 fJ2l w (z, yo(y), o-o(y), p, o-o(y), y)p(z, y) dz) ? 0. 

Using (2.1.18) and (2.1.20) (for the inequality giving the 0 in the last step 
of (2.1.21)) andfRo < oo (forbounded convergence), 

lim SUPL >0 f ,u(dy) f-3 L2 dx f-L/2 W(Z, x, y) p(z, y) dz 

= lim SUPL-- f ,u(dy) {f-L-A dx fi-Lx2dz + f-3L/2 dx f-L/2 dz 

+ f-L+A dx f-L X dz + J-LA dx fii/7 dz} I(z, x, y)p(z, y) dz 

? lim SUPL-*OO f$A dx f ,(dy) f-L/2 

(2.1.21) *w(z, -yo(y), o(y), -y(x -, L, y), o (x-L, y), y)p(z, y) dz 

+ lim SUPL- $ ,u(dy) {-L/2 dz SAz-L dx + f-L+A dx r-L-J dz 

+ -L/2 dz SA-L dx} cI(z, x, y)p(z, y) dz 

? 0 + 2 limL- f ,u(dy) f-L/2 (Izi + A)W(z + -yo(y), 
. -o(y), y)p(z, y)dz + limL-.0 fA dx {sups,eq r f .(dy) 
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The choice of A in (2.1.21) is arbitrary. Using (2.1.2) and (2.1.3) the last two 
terms on the right of (2.1.21) may be made as small as desired by choosing A 
sufficiently large. Hence 

(2.1.22) lim SUPL,oo f u(dy) f-3L/2 dx fL/2 C(z, X, O)p(z, y) dz < 0. 

Similarly, 

(2.1.23) lim SUPL,.f u (dy) fL/2 d fx- L C(z, x, y)p(z, y) dz ? 0. 

Substituting (2.1.22), (2.1.23), and (2.1.8) into (2.1.7) yields 

(2.1.24) lim infL, If u(dy) JVL/2 dx -L/2 C(z, X, y)p(z, y) dz O 0. 

Since bo is a best inv est the quantity in braces in (2.1.13) is non-positive. 
Thus (2.1.13) and (2.1.24) together imply 

(2.1.25) f u(dy) f .C(z, x, y)p(z, y) dz = 0 a.e. (dx). 

(2.1.1) implies that the best inv est (Yo(y), oo(y)) is uniquely determined a.e. 
(u). This fact and (2.1.25) prove that for almost all x (dx), -yo(y) = -y(x, y) 
and oo(y) = u(x, y) a.e. (,u). This proves (2.1.4). Finally, (2.1.4) implies that 
R(0, 6) = R(0, (o). Thus (o is admissible. 

This completes the proof of the theorem. 
2.2. Some results concerning assumption (2.1.1). For the fixed-sample-size 

problem Farrell (1964) has shown (under some mild restrictions) that if the 
best inv est (given by -yo(y), ao(y)) is not uniquely determined a.e. (,u) then it 
is not admissible. Assumption (2.1.1) clearly implies that the best inv est is 
unique a.e. (,u). It will be shown in this section that (2.1.1) is in fact only a little 
stronger than uniqueness of the best invariant estimator in the general sequential 
problem and almost the same as uniqueness in the more specialized fixed-sample- 
size problem (see Corollary 2.2.2). 

For the general problem as defined in Section 1.1, if a is any invariant proce- 
dure (and E(x, y) = x + 7y(y)), let 

(2.2.1) R(( I y) = f W(z + ay(y), o(y), y)p(z, y) dz. 

It is convenient to abuse this notation somewhat as follows: If v is a real number 
then we let R( (v, a' )Iy) = R(b I y) where a = (ey, a') with a = a' and ay(y) = v. 
As a convention, if 0 is an empty set of real numbers, let inf 0 = oo. 

LEMMA 2.2.1. Let a'( * ) be a fixed invariant stopping rule. Suppose there exists 
a procedure a = (ey, a') c 9 such that R () < oo . Suppose pn( * X * ) and W( , n, *) 
are measurablewithrespectto the field of Borel subsets of E.( = {x, Y1, Y2, Y .-, 
Define -yo'(y) by 

(2.2.2) yo'(y) = inf {v: R((v, C') I y) = inf tf((t, a') I y)}. 

Suppose 1Lyo'(y)I < ?? a.e. () 
Then -yo'(y) is finitely (Borel) measurable, So' = (yo', o ') c A, and R((bo') 
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bo' is the unique (a.e. (,u) ) estimnator of the form (-y, o-') E g having risk R(bo') if 
and only if for almost all y the set in braces on the right of (2.2.2) contains only one 
point. 

Suppose bo is unique (a.e. (,u)) as above. Suppose also that 

(2.2.3) lim inf R R((v, C-') Iy) > inftR((t, -') I y) a.e. (,u). 

Let &k' = (Yk', S') 8 g be any sequence of estimators such that R(bk') -+ 

Then <Yk' -> yo' in measure (,u) as k - oo. 
PROOF. Consider the function 

(2.2.4) fM(v, y) = f W(z + v, n, y)pn(z, y) dz 

= R((v, C') y) 

defined on :(n) = [y: o-'(y) n}. Since W(z + v, n, y)pn(z, y) is a Borel measur- 
able function of z, v, Y, Y2, ... , yYn- for y 8 2(n) it follows that fn(v, y) is well 
defined for almost all v, y e N (n) and is a Borel measurable function of v, yl, 
* *Yn-1 i 

It follows directly from Lemma 2.1.1 that fn(v, y) is lower semi-continuous 
in v for each fixed y', ... , Yn-1 . Hence for each fixed y', ... , Yn-1 2 T(y) = 

{v: f(v, y) = inftf(t, y)} is a closed set. 
We now use a theorem of Novikoff, see Arsenin and Liapunov (1955), p. 

80 or Hahn (1948), p. 389-391. This theorem, slightly generalized, states that if 
S is a Borel set in E1 x Ek such that the section of S at each y 8 Ek is closed, then 
the projection of S on Ek is Borel measurable. 

Let gn(Y) = infvfn(v, y) . Let cu,a = {v, y: fn(v y) ? a}l. Since fn in v for each 
fixed y is lower- semi-continuous the cross sections of cUa at each ye I (n) are 
closed. Since fn is Borel, cUla is a Borel set. Hence {y: 3v; (v, y) e 91a}= 

Y: gn(Y) < a} is a Borel set, and gn is a Borel measurable function. 
Now, let T = Uyel(n) T(y). Also, let Sa = {T} n {(- oo, a] x 2(n)}. It fol- 

lows from the previous paragraph that T = {v, Y: fn- gn = 0} is Borel. Hence 
for each a, Sa is a Borel set in E1 x En-, and the section of Sa at each y e En- 
is closed. Thus the projection of Sa is Borel measurable. But, using (2.2.2,) 
this projection is precisely {y: y t Y(n), -yo'(y) < a}. Hence yo'(*) is Borel 
measurable on :(n) for each n. Since a' < oo with probability 1, -yo' is finitely 
measurable. Clearly, also, bo' = (yo', C') satisfies (1.1.3), and o' 8 W. 

For the second part of the lemma, suppose for some n the set on the right of 
(2.2.2) contains more than one point for a set of positive , measure in 2(n). 
Since yo' (y) is measurable, the sets Qj = { (v, y): y ? 2(n), v > -yo'(y) + l/j} 
are measurable in En . For some j < oo the set Qj has a projection (on {y} ) 
of positive , measure. For this j define i o(y) = -yo'(y) if y r Qj, = inf {v: v ? 
'yo'(y) + 1/j, f(v, y) = inftf(t, y) } if y 8 Qj . Using the methods of the first part 
& = (e o0 C') 8 g and R (o) = R(So'). This proves the "only if" assertion; 
the "if" assertion is obvious. 

For the third part of the lemma, suppose (ak', a-') 8 g and R(6k') > R(So') 
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Then R(&k' I y) ? R(bo' I y). Since f [R(3k' I y) - R(bo' I y)11t(dy) -> 0 it follows 
that R(bk' I y) -* R(bo' I y) in measure (,). Finally since bo' is unique a.e. (,u) as 
above, since R( (t, cr') I y) is lower-semi-continuous in t for -oo < t < oo, and 
since, by assumption, lim inft.?+O R((t, o-') I y) > R(bo' I y) it follows that 
Yk' ->0o in measure (,u) as k -> co. This completes the proof of the lemma. 

Suppose for each k, either W(t, k, y) = oo or 

(2.2.5) lim inft,,fi, W(t, k, y) > W(v, k, y) for all v a.e. (IL) 

and that for almost all y strict inequality holds in (2.2.5) for a set of values of 
v having positive Lebesgue measure. Then it is clear that 7yo' as defined in (2.2.2) 
satisfies jyo'(y)j < oo a.e. (,u), and that (2.2.3) is satisfied. Thus the following 
lemma for the fixed-sample-size case follows immediately from Lemma 2.2.1. 

LEMMA 2.2.2. In the fixed sample size case suppose there is a b e g such 
that R(5) < oo. Suppose W and p are Borel measurable functions and 
lim inft40, W(t, y) > W(v, y) for all v a.e. (,u) and 

f [lim inft+?i, W(t, y) - W(v, y)] dv > 0 a.e. 

Then a best invariant estimator, say 5o, exists. Assumption (2.1.1) is satisfied if and 
only if this estimator is uniquely determined a.e. (,u). 

We now turn to the general sequential case. 
LEMMA 2.2.3. Suppose for some a e g, R () < oo . Suppose for every fixed j e J, 

W and p are Borel measurable, and 

(2.2.6) liminft,OW(t,j,y) _ W(t,j,y) a.e. (,) 

with strict inequality holding for a set of values of t having positive measure (a.e. (,u) 
and for all j < 0o ). Suppose also that 

(2.2.7) liminfj1O0inft W(t, j, y) = 00 a.e. (,) 

and (as in ( 1.1.4)) W(t, oo, y) = oo. Then there exists at least one best invariant 
estimator. Furthermore, assumption (2.1.1) is satisfied if and only if the best in- 
variant estimator is uniquely determined a.e. (,u). 

PROOF. As a technical device we introduce the possibility of randomized in- 
variant estimators. It is convenient here to use the notation of Section 1.3 with 
one slight change. Here, we let Yo' = Z (instead of Y1' = Z) be a real random 
variable uniformly distributed on (0, 1), measurable with respect to a field labeled 
a0 . Z is observed without cost after observing X and before Y1 . To be consistent 
in our notation Yi is still measurable with respect to Oi+l , and o-(z, y) = n ? 2 
means (as in the non-randomized case) that the sampling stops after observing 
X, Z, Y1, * Yn. 1 = X, Yo y1, * n *, y_1 - 

Also a(i) = (3( U=o ai). By convention, u(z, y) = 1 will mean (for this lemma 
only) that sampling stops after observing X and Z. It is never advantageous to 
stop after observing X but before observing Z, and that possibility is not allowed 
for in this notation. 

For each y = yl, Y2, * ... and any a o e let 

(2.2.8) Trk(y, a-) = Pr {z: o-(z, y) = k} = f {za(z,y)=k) dz. 
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In words, Tk(Y, c) is the probability of stopping after observing y', Y2, ,Yk- 

when using the rule a- 8 W. (Clearly, 'rk is measurable with respect to k. 

Using (2.2.6) and Lemma 2.2.1 it follows that for any fixed stopping rule 
a' e g there exists at least one procedure a E g such that R(a) = i R(5). 
Call this estimation procedure 6 ,,, and &',, = (y,, , a-'). As in Section 1.3, we may 
(and will) assume that -y, is non-randomized, i.e. is not a function of z given the 
value of a'. 

Let y() be a best estimate corresponding to the stopping rule v(y) = k as 
above. And let a(k) = (_(k), k). Then for any a- 8 g, 

(2.2.9) R(-y, a-) = Zk=1 f rk (Y, a-)R(a(k) J y)M(dy). 

Now, let = (-yi , ai) be any sequence of estimators in g such that R(bj) 
infa,, R(Q). Since the functions 1k(y, ai), k = 1, 2, ... , are a countable set of 
bounded functions of y, there is a subsequence {i'} c {i} such that the functions 
Tk(Y, 0-i') converge weakly (A) to a limit, say i-k(Y), k -= 1, 2, . . These func- 
tions Tk are measurable with respect to a(k), hence they determine a stopping rule, 
say v*. The fact that R(a) < X for some a E g and (2.2.7) guarantee that v-* < 
a.e. (y1). Clearly then O-r E W. Associated with o-* is a procedure &* = (0 X*). It 
remains to be shown that R(a*) = infae, R(a). 

We note first that for any fixed k, 

(2.2.10) f Tk(Y, oi,)R(a(k) I y)iA(dy) f Trk(Y)R(a kI Y) (dy) as i> oo. 

If f R(S(k) I y)A(dy) < oo this follows from the definition of weak convergence. 
If this integral is infinite the result (2.2.10) is not quite standard, though very 
easy to prove. Note that for any positive number t, f inf (R(a(k) I y), t)A(dy) < co. 
Hence, for each fixed t > 0 as i' -oo 

f Tk(Y, 0-i') inf (R(a(k) I y), t)4(dy) Jf 7k (Y) inf (Ra(k) Y), t).(dy). 

In addition, 

limt'. f Trk(Y, 0-i') inf (R((k) y y), t)j.(dy) = f Tk(Y) o-i,)R(() y)i4(dy) 
and 

limtO. f Trk(Y) inf (R((k) I y), t)iA(dy) = f Tk(Y) (R(a(k) I y)ii(dy) < c. 

These equations prove that (2.2.10) is valid. 
Using (2.2.9) and (2.2.10) 

limi'..o R(Qya, , oi) = limi'W Zk-1 f 7k(Y, oi,)R(a y)A(dy) 

(2.2.11) _ Sk--1 f Tk(y)R(k I y)I(dy) 
= R(a*). 

Since 

infafe Rf(a) = limi,,, R (i, ) _ limi.o R(Se) 

> R(a*) > infa,,R(a), 
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it follows that R(6*) = infa, R(a) = Ro . Hence there exists at least one best in- 
variant randomized estimator. Then by the reasoning of Section 1.3 there exists 
at least one best invariant non-randomized estimator, say 5o. Thus 8o is a best 
invariant estimator for the original (non-randomized) problem. 

To prove the second assertion of the lemma, suppose that 6o is uniquely deter- 
mined a.e. (,u) in the original problem. Then 6* is uniquely determined a.e. in the 
randomized problem; and the functions rk(Y, v*) are 0-1 functions a.e., for 
k = 1, 2, . .. . That is, Tk(y, a*) = 1 if ao(y) = k, and = 0 otherwise, a.e. (p). 
Let bi = ('yi., or) be any sequence of procedures (in the randomized problem) 
with R(Gi) -> Ro . Then there is a subsequence {i'} c {ii such that 7rk(Y, Cri') 

Tk y, *) weakly. 
We assert that rk(Y, ai') -*> rk(y, C*) in measure (,4). Note first that 

0 ?< rk(y, ri) < 1. From the weak convergence 

(2.2.12) f{y:rk(yo*)=i1 irk(Y, a*) - Tk(Y, ov)],4(dy) -> 0. 

Since the integrand of (2.2.12) is non-negative, it follows that Tk(Y, a,,) -> 1 in 
measure (,u) on the set where Tk(Y, a-*) = 1. Similarly for the set where 
Tk(Y, *) = 0. The assertion of this paragraph is thus verified. It follows immedi- 
ately that rk(Y, a-i) -* Tk(Y, C*) in measure (,.), and then that ai > a* in measure. 

It is now almost immediate that -yi --* 'y in measure (,u). Thus assumption 
(2.1.1 ) is satisfied, at least in the randomized problem. This implies that assump- 
tion (2.1.1) is also satisfied in the original non-randomized problem. 

This completes the proof of the lemma. 
2.3. Some lemmas concerning Assumption 2.1.2. The lemmas in this section de- 

scribe conditions that imply the validity of assumption (2.1.2), i.e. 

fo dX{sups,, f Ms (dy) f [W(x + yo(y), o-o(y), y) 

- W(x + Py(y), a(y), y)]p(x, y) dx} < co. 

In the fixed-sample-size case it is shown that (2.1.2) is very nearly implied by 
the moment condition, (2.1.3), of Theorem 2.1.1. Apart from some particular 
sequential cases it seems much more difficult to prove that (2.1.2) is valid in the 
sequential case than in the fixed-sample-size case. We have been able to state 
conditions which can be easily interpreted in the case of the special sequential 
estimation problem described in Section 1.2. 

In order that the results may be easily compared all the lemmas are collected 
together in the first part of this section. Tlieir proofs are all given in the last part 
of this section. 

Throughout this section (as in all of Section 2), we assume the general setup 
of Section 1.1 with dimension m = 1. 

The first lemma is quite obvious. It merely states formally the fact that (2.1.2) 
depends only on the tails (in x) of p(x, y). 

LEMMA 2.3.1. Suppose there exists a Xo < oo such that 

(2T3h1) a i ((d2) f_)i pa(x, y) dx-s1. 

Then assumption ( 2.1.2) iS satisfied. 
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The next lemma applies to the sequential casewhen the sample size of any pro- 
cedure having finite risk is bounded by, say, N < oo. In particular this lemma 
applies in the fixed sample size case. Conditions (2.3.2) and (2.3.3) of the lemma 
are closely related to (2.1.3). 

LEMMA 2.3.2. Suppose there exists an N < oo such that W(t, n, y) oo for 
n > N. Suppose there is a number 0 <? 3 < oo such that either for all t, n, 
y (n < N)W(t,n,y) <f and 

(2.3.2) f ,u(dy) f lxl p(x, y) dx < oo; 

or, that for each n, y (n < N)W(t, n, y) is non-increasing in t for t < and non- 
decreasing in t for t > ,3, and 

(2.3.3) f ,u(dy) f Ix SUP rj<2jxjl+ W(r, n, y)I p(x, y) dx < c. 

Then (2.1.2) is satisfied. 
Recall from Section 1.2 that in the fixed-sample-size case a best invariant esti- 

mator on the basis of X, Y is admissible if and only if a best invariant estimator 
on the basis of the transformed variables X' = X + r(Y), Y' = Y is admissible. 
Thus it may be that (2.3.2) (and even (2.1.2)) fail to be satisfied for X, Y; but 
that the problem may be transformed, and (2.3.2) (and (2.1.2)) will be satisfied 
in the transformed problem. (Generally speaking such a transformation will not 
affect the validity of any of the other hypotheses of Corollary (2.2.2).) These re- 
marks apply also to (2.1.3) in Theorem 2.1.1 and to Lemma 2.3.3. 

Note also that if W is uniformly continuous, (2.3.3) is implied by the condition 

f i(dy) 
f 

x2p(x, y) dx < oo. 

The next lemma applies to two important fixed-sample-size cases: confidence 
interval estimation and convex loss functions. 

LEMMA 2.3.3. Suppose the problem is of fixed-sample-size type, and suppose 
-yo(x) = 0. 

(a) If there exist a, ,3 < oo such that W(t, y) a for Itl > 3 and 
supt W(t, y) = a then (2.1.2) is satisfied. 
Or, 

(b) if W(t, y) = W(t) is a convex function of t and there is a to > 0 such that 

(2.3.4) f Au(dy) f Ix2xW'(x + t)I p(x, y) dx < o 

for all t such that | < to. Then (2.1.2) is satisfied (W'(x) = (d/dx)W(x)). 
In Lemma 2.3.3 we have assumed for convenience in the proof that -yo(x) = 0, 

which may always be achieved by a change of variables. If this assumption is re- 
moved then the condition (2.3.4) must be replaced by 

(2.3.4') f ,u(dy) f (x2 + PyO2(y))IWI(x + yo0(y) + t)I p(x, y) dx < co n 

and the statement of condition (a) must also be altered. We leave the necessary 
modifications to the interested reader. 

The remaining two lemmas (whose hypotheses can be made slightly weaker) 
deal with the true sequential problem, where the sample size may be unbounded. 
They deal only with the frequently treated case where 
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(2.3.5) W(t, n, y) = W1(t) + W2(n), W1 > 0. 

The second lemma is a (non-trivial) specialization of the first to the special 
sequential problem (see Section 1.2). 

Let gn denote the set of invariant estimates which depend only on the first 
n-observations (x,y, ... *, Yn-) i.e. E(X, y) E gn if and only if E(x, y) = 

E(X, Yi , Y2, ... , Yn-1) = x + 'Y(Yl X... * Yn-1). Recall from (1.1.1) that Pn(X, y) 

is the conditional density of x given y1, ... , yYn1 taken as a measurable function 
(n) on (( 

LEMMA 2.3.4. Let W satisfy (2.3.5). Suppose for some c > 0, W2(n) 
- W2(n - 1) > c, n = 0, 1, 2, ... , and sUpt Wi(t) > c, and, for some k, 
1 < k < co, W2(n) = O(nk). Assume for some a > 0; 

(2.3.6) fr(dy) f lxll+p(x y) dx < oo 

Assume there is a sequence 'Yn X Yn 6 4n n = 1, 2, ... , such that 

(2.3.7) l{y: f Wi(x + yn(y))p(x, y) dx > c/2} = 0(n-k(l+2Ia)+2) as n-> oo. 

Suppose either (a) W, is bounded; or (b) W1(t) is non-increasing for y < -p3, 
non-decreasing for y > p3, and 

(2.3.3') rf (dy) f Ix Sup jj<2jxj?+ W&(r)I p(x, y) dx < oo. 

Then (2.1.2) is satisfied. 
It should be remarked that in (2.3.7) the constant c/2 has been chosen for con- 

venience in the proof. Any other constant less than c could replace c/2 in (2.3.7). 
A condition analogous to (2.3.4') may be substituted for conditions (a) or 

(b) in the above lemma. Certain sections of the proof must then be altered. Since 
it occurs only rarely that (2.3.4') is satisfied when (2.3.3') is not, we leave it to 
the interested reader to prove this additional result. 

Recall that in the special sequential problem the independent identically dis- 
tributed random variables X1, X2, * - are observed. p(x, y), given by (1.2.1), 
is computed from f, the probability density function of X1 . Let the probability 
distribution function of X1 when 0 = 0 be F. 

LEMMA 2.3.5. In the special sequential problem, suppose W is given by (2.3.5) 
where W2(n + 1) - W2(n) > c, and suppose Wi(t) < d < c/2 on an interval 

rl < t < D2 such that F(v2) > F( i),and W2(n) = O(nk). 
Assumefor some a > 0, 

(2.3.6' ) f ixi 1+a a(x )dx < oo 

Suppose either (a) W, is bounded; or (b) W1(t) is non-increasing for t < - p3, 
non-decreasing for t > p3, and 

(2.3.3") f IxI SUPIT1<21xj+# Wl(r)f(x) dx < oo. 

Then (2.1.2) is satisfied. 
As in Lemma 2.3.4 any constant less than c an replace c/2 in the above lemma. 
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Note that the hypotheses of this lemma are non-sequential and fairly easy to 
verify in any particular case. 

The proofs of these lemmas will now be given. As in Section 2.1, let 

(2.3.8) c(z, yo, o-o, y, o-, y) = W(z + 'yo, oo, y) - W(z + -y, a, y) 

and we shall also often omit writing the argument y of (Ty(y), a(y)) E W. Also, let 

(2.3.9) I = fJ dXIsupaeg ,f r (dy) f co (x, yo(y), 

oo(y), y(y), a(y), y)p(x, y) dx}. 

Condition (2.1.2), then, is that I < oo. 
The technique of "truncating" estimators (as used in (2.3.15)) is central to 

the proof of several of these lemmas. The "truncated" estimator is at least as 
good as the original estimator and the "tail integral" of its risk is finite (as in 
(2.3.17)), whereas the tail integral of the risk of the original estimator need not 
be finite. 

PROOF OF LEMMA 2.3.1. As a consequence of (2.3.1) for X > Xo, 

(2.3.10) SUP6Eg fJfx co(X, 0, o,0 y, a-, y)p P(x, y) dx (dy) = 0. 

Hence, 

(2.3.11) I _X xo dX f T(dy) f W(x + yo(y), o-o(y), y)p(x, y) dx < XoRo < oo. 

PROOF OF LEMMA 2.3.2. Since bo is the best invariant estimator 

(2.3.12) f Au(dy) f 
' 

c(x, yo, o-o, y, a-, y)p(x, y) dx < 0. 

Hence, 

(2.3.13) f ,u(dy) f-x co(x, Pyo, ao, y, a, y)p(x, y) dx 

< -f i(dy) fjxI>x c(x, 'Yo, )o ,0, a-, y)p(x, y) dx. 

If W < ,B then using (2.3.2), 

I < - f dX f J(dy) fIxI>x c(x, yo,ao, y , y)p(x, y) dx 

(2.3.14) < f f dX f zi(dy) fjx>x p(x, y)dx 

= f J,(dy) JIxI p(x,y) dx < m. 

Suppose, on the other hand, W satisfies the monotonicity assumptions in 
Lemma 2.3.2. If 6' E f is any estimation procedure, then the procedure a' given by 
c' = a and 

7',(Y) =-X-: 7(y) <- ,B 

(2.3.15) - , (Y), y'(y)I < X +3 

+ atii (Y) > X + 

satisfies 
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(2.3.16) J'?x W(x + iy', a-', y)p(x, y) dx ? J W(x + y', a-', y)p(x, y) dx. 

Hence, it is sufficient to consider sUP6ES of the appropriate integral in the defi- 
nition offI, where S = = = (5, a-) Jy, I ? X + ,B}. If this is done then using 
(2.3.13) and (2.3.3) 

I ?< sUpEs {If dX f -i(dy) f I>x W(x + y(y), o-(y), y)p(x, y) dx} 

(2.3.17) < fo dX J1xI>x sUPIT(y)I <x+# W(x + T(y), cT(y), y)p(x, y) dx 

< EN= f y (dy) f -O 
p(x, y) dx fIxI 5UPITI<2X?: W(r, n, y) dX 

= En=l 2i (dy) f Ix SUPITl<21Xl+j9W(T, n, Y)I p(x, y) dx < oo. 

This concludes the proof of Lemma 2.3.2. 
PROOF OF LEMMA 2.3.3. (a) If W(t, y) = a for Itl > # and supt W(t, y) = a 

then for X > , and any 5 c 8, 

f Au(dy) f I>x W(x + y(y), y)p(x, y) dx < f ,u(dy) JfI>x W(x, y)p(x, y) dx 

Since yo(y) 0 is the best invariant estimator it follows using the above equa- 
tion that for X > 3, 

f ,u(dy) .fx W(x + y(y), y)p(x, y) dx > f u(dy) f Lx W(x, y)p(x, y) dx. 

(Otherwise y (y) would be a better estimator than yo *) Hence 

(2.3.18) SUpSeg Jf x co (x, yo ao, 7, , y)p (x, y) dx = 0. 

Thus as in (2.3.11), I _< fRo . 
(b) In the case of convex W, using (2.3.4), 

(2.3.19) 0 = (d/di) f W(x + t)p(x, y) dx I=o = f W'(x)p(x, y) dx. 

Since W is convex W(x) - W(x + y) < -yW'(x). By assumption W assumes 
its minimum at some point, say ,. Then reasoning as in Lemma 2.3.2 the su- 
premum on the left of (2.3.20) (below) occurs for a y with 1yj < 1X + #. Define 

= {y: JyI < X + ,B}. Then, using (2.3.19), 

f dX{sup, f ,(dy) f 'x(W(x) - W(x + y(y)))p(x, y) dx} 

(2.3.20) < f dX{supT,3B f 1i(dy) J7Lx -y(y)W'(x)p(x, y) dx} 

< f dX{sup,,BA f M(dy) f I>xy (y)W'(x)p(x, y) dx}. 

Thus to continue, 

(2.3.21) I < f ,u(dy) f I W'(x)I p(x, y) dx f lxi (X + 1i1) dX 

< j ,u(d,) f ((x2/2) + lxI)lW'(x)I p(x, y) dx < oo. 

This completes the proof of Lemma 2.3.3. 
PROOF OF LEMMA 2.3.4. Let 5* = (z*, yo*) be the estimation procedure (in- 

variant) which stops the first time f Wi(x + Yn(Y) )pn( x y) dx < c/2 and makes 
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the estimate ty when it stops. As a consequence of (2.3.7), Pr {ff* > n= 

O(n-k(l+2Ia)+2) so that 

(2.3.22) f (W2 (a*(y)))l+2IaM(dy) < 00 

(In particular, v* stops with probability one and 5* has finite risk.) 
It follows from the definition of o* and the property W2(n) - W2(n - 1) ? c 

that 0o(y) ? a*(y) a.e. (,u). (If yi, Yn * with a*(yl n) = n has been 

observed, then the expected value of W, given yi, Y2, I , yn, and hence the 
maximum amount the expectation of W1 could be decreased by further sampling, 
is less than the cost of taking one more observation.) 

In the bounded sample size case of Lemma 2.3.2b the first step of the proof was 
to construct for any given a E 4 another (truncated) estimator a = (y, a-) which 
gives a value for the integral in (2.3.16) which is not larger than the value given 
by 5. The condition (2.1.2) then only needed to be verified for the set of all pos- 
sible a rather than for the set of all a in ?. In the sequential case the analog of a is 
a procedure called 5+ which may be different from a in both its estimator and its 
stopping rule. After constructing 5+ in order to prove that (2.1.2) is satisfied we 
have found it necessary to introduce as an analytical device a variant of 5+, 
called 8+, and defined with the aid of the construction of 5* above. The heart of 
this verification is the steps (2.3.29)-(2.3.35), which conclude the proof of the 
lemma. 

It seems desirable at this point to use the theory of stochastic processes. As 
before, let H = E1 x E1 x ... and let a(') be the usual a-field on H. Let In be 
the a-field on H induced by the random variables Y1, Y2, ***, Yn- . Then 
E(X j n),n = 1,2, ... , oo,isamartingale (see (2.3.6)). Let 

(2.3.23) J (X) = 1 if IXi < X 

= 0 if IXI > X, 

then E(Jx I &-.n) and E(1 - J In), n = 1, 2, ... , oo, are also martingales. 
We assert that 

(2.3.24) inf6Eax f A(dy) Jix W(x + y(y), a(y))p(x, y) dx 

= infa,E f p (dy) fx W(x + y(y), o(y))p(x, y) dx, 

where Dx is defined by the following: Let 

ox' ={:a = (Qy, a),8 ?, a n onthe 

(2.3.25) (n-measurable set where both 

E{Jxf pn(X, y) dx I (2n} > 2 and 

fw Wl(x + Yn(Y))pn(X, y) dx < 'c} 

('Yn is as previously defined). Then define 

(2.3.25a) n = { : 5 8 0x, I(T)I < X + 3} 
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where in case (a) we take # = oo. (Thus in case (a) Ov = Oi'.) To prove this 
assertion, consider any a = (y, a) e g. Let 6+ = ( u+, 0+) be constructed from 6 by 
the following truncation process: If o-(y) = n (y = yl, Y2, * * * ) but for some 
nI < n, f Wl(x + 7n'(y))pn(x, y) dx < 4c and at y the function 
E{f)pn(x, y) dx I an& is >2 let c+(y) be the least such value of n', and let 

- ye+(,)(y) (I is defined in (2.3.15). Otherwise let a+(y) = c(y) and 
7y+(y) = y(y). It is an easy matter to verify that 6+ c g, (i.e. that 6+ satisfies 
1.1.3 a.e. (,i)), and hence 6+ eo . Now, 

f (dy) J'x[W(x + y(y),o(y)) -W(x + y+ (y),cr+(y))]p(x,y) dx 

-f fy8+(y),v(y)l/.(dY) fi' [Wi(x + -y(y)) - WI(x + y+(y)) 

(2.3.26) + W2Q(a(Y) W2(o+(y)Y)]p(x, y) dx 

> f(B+ o)< IA(dy) .fl [-W,(x + y+y(y)) + c]p(x, y) dx 

> -2C + c f Y:6+(i)F65(Y)) A(dy) fj'x p(x, y) dx 

- -2c + IC = 0. 

Since for every 6 e g there is a 6+ e Ov satisfying (2.3.26), the assertion (2.3.24) 
is proved. 

If6 = (,o) c 9 define - ( a)by 

a(y) = inf (r(y), a*(y)) 

(2.3.27) i(y) = -Y(y) if a(y) = o(y) 

= y* (y) if a(y) < a(y). 

It can be easily checked that 9 e 4. Note that if 6 e ox, then (definition) 

(2.3.28) K = {y: 6(y) # (y)} c {y: 3n3 E{Jx I dnI(y) < 2 

where E{Jx I I} (y) denotes the value of the &tn-measurable function E{Jx I dn} 
at the point y. 

If Y+, L+ e Dx, using (2.3.13), 

f A (dy) J'-x [W(x + zyo(y), TO(-))y W(x + y+ (y), a+(y))]p(x, y) dx 

- f A(dy) f x [W(x + yo I To) - W(x + +, a-+) + W(x + 7+,a-+) 

- W(x + ,+y, a+)]p (x, y) dx 

< f (dy) fJI>x W(x + p (x, y) dx 

(2.3.29) + 
fKr (dy) frx W(x + y* a*)p(x, y) dx 

- fiKo (dy) f1x1>X Wl(x + e+(y))p(x, y) dx 

+ fi M(dy) fIx W> W2(3f+(Y))p(X, y) dx 

+ fK M(dy) rf-.. Wi(x + y*(y))p (x, y) dx 

+ fK A (dy) J'Jx W2(a *(y) )p(X, Y) dx, 
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where KC = {y: y z K}. (Note that () + = (5+), hence we have written merely 

Using (2.3.27), H6lder's inequality, (2.3.22), and (2.3.6), there is a bi such that 

f u(dy) f J1>X W2(3-+(y))p(x, y) dx 

(2.3.30) ? f A(dy) fJxl>X W2(r*(Y) )p(x, y) dx 

? [f (W2(u*(y)))l+2/aA(dy)]aI(2+a)[f j(dy) f 1x1> p(X, y) dX]21(2+a) 

? b1( 1/,) (2+2a)/(2+a) 

Since E{ 1 - Jx I 'a is a martingale, the martingale stopping theorem implies 

(2.3.31) p{y: minnE{JJXj I O}(Y) < 2}= 14{y: maxn E{1 - JX I dn}(Y) > 2} 

< 2 f p(dy) f1;I>x p(x, y) dx. 

See Doob ( 1953), p. 314. This fact together with the definition of y*, (2.3.28), and 
(2.3.6) implies there is a b2 > 0 such that 

fxA(dy) f W1(x + y*(y))p(x y) dx < (c/2) fK,A(dy) 

(2.3.32) < c f A(dy) Jfj,>x p(x, y) dx 

_< b2(1/X )I+a. 

Finally, there is a b3 such that 

fK R(dy) f x W2 (G*(y) )p(x, y) dx 

(2.3.34) ? f KW2(Y*(Y))A(dY) 
< [f (W2( T*(Y)))1+21a (dy)]a/(2+a)[f A(dy) f $X>X P(X, y) dX]21(2+a 

- b3( 1/X) (2+2a)I(2+a) 

Combining the remarks around (2.3.25a) with (2.3.6), and (2.3.3')as in7the 
proof of Lemma 2.3.2 to get the bound b4 for the first term of the last expression 
of (2.3.29), and using Equations (2.3.29)-(2.3.33) 

I = fJ dX sup8e. {f f(dy) fJix [W'(z + yo(y),) o(y)) 

-W(z + y(y), o(y) )]p(x, y) dx} 

= fdX sups, I{f A(dy) fx [W (z + 7yo(y), ao(y)) 

(2.3.34) - W(z + 7y(y), u(y))]p(x, y) dx} 

-< b4 + b1 J' (1/X)(2+2a)/(2+a) dX + b2 f5 (1/X)1+a dX 

+ 63 f7 (1/X)(2+2a)I(2+a) dX + Ro 

< oo. 

This completes the proof of Lemma 2.3.4. 
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PROOF OF LEMMA 2.3.5. Let 471 (t) = max {Wi(t), d} where (as in the state- 
ment of the lemma) Wi(t) < d < c/2 on Pj < t < . There is a P3 such that 
F(v1) < F(?3) < F(v2) where F(v3) = r/s = p (r, s integers), a rational number. 
If Yl I Y2, . * yn I n = vs, v an integer, is a set of numbers, define r(Yi, * * *, yn) 
to be the vrth largest of the yi (i = 1, 2, * , n = vs). Thus when, for example, 
p = r/s = ,2 r = (Y/i, *, * yn) is (almost) the median of yl, , Yn . For each 
integer n, let (n) denote the largest integer k such that k < n and k = vs for some 
integer v. If y = Yl, Y2, * * *, let lrn(Y) = ir(Yl Y2 , * * Y(n)). 

(2.3.7) will certainly be satisfied if for any K, 1 < K < ??, 

(2.3.35) {Y: TfWl(x + irn(y))pn(x, y) dxl > c/2} = (n K) 

where pn(X, y) is determined byf and the nature of the special sequential problem 
(see (1.2.1)). Since yi = xi+1 - x, x + 7rn(Y) = irn(X2 , x3* *). Thus, using the 
definition (1.2.1) of p(x, y) and A, 

nK f g(dy) f [Wi(x + irn(Y)) - d]pn(X, y) dx 

(2.3.36) = n"K J p(dy) f [W1(irn(X2, X3,.* ))-d]pn(x, y) dx 

=nif [Wi(n(x2, X3n 
K 

* *)) - d]llV%='f(xi) dxi . 

It is easy to compute the distribution of Tn . If this distribution is substituted 
(2.3.36) becomes 

(2.3.37) rJ [ -V() d]( (r/)s7(n)_l)(n)(F(r))P()-l(- F(Tr))(' T( f(i) d7r. 

Using W1(t) = d for tj < t < P2 and Stirling's formula the expression (2.3.37) 
is the order of 

O{nK 2K) -p(n)(1 p)-(1-p)(n) 

(2.3.38) * f [WT1(r) -d] (F(7r) )p(1n) - F(r) ) (1-p)(n)f( r) d7r} 

- O{nK.n2(p)-Pn(j - p)-(l-p)n max t2 (F(t))Pn(l - (1p)n 

f7r?<l or r?.2 [Wi(r) - d]f(ir) dr} as n - > oo. 

(2.3.3" ) proves that 

(2.3.39) f WIV(x)f(x) dx < o. 

Applying (2.3.39) to (2.3.38) and simplifying yields 

nK f ,(dy) f [Wl(X + Tn(y)) - d] pn(X, y) dx -+0 as nl * oo. 

Thus (Chebyshev), 

(2.3.40) ,t{y: TV1(x + 7n(Y)) -d > c/2 - d} = o(n-K) as n *oo 

which proves that (2.3.35) and thus (2.3.7) are satisfied. 
It can be easily checked that the remaining conditions of Lemma 2.3.5 are 

equivalent to the remaining conditions of Lemma 2.3.4. Thus Lemma 2.3.4 may 
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be applied to prove that (2.1.2) is satisfied. This completes the proof of Lemma 
2.3.5. 

2.4. A resull concerning the necessity of the conditions in Theorem 1.1.1. The 
hypotheses of Theorem 2.1.1 include explicitly (in (2.1.3)) and implicitly (in 
(2.1.2) ) certain conditions on the moments of p. In the fixed-sample-size case if W 
is independent of y, W(x) is convex, and W(x) - clxl" for some k, 1 < k < ?o, 

as x -> oo then these conditions will all be satisfied if 

(2.4.1) f A(dy) f IxflW(x)p(x, y) dx < x 

for a = 1 (see Lemma 2.3.3b). It is of some interest to determine whether the 
condition a = 1 is the best that can be obtained under such circumstances; 
and eveni further whether, perhaps, the best inv est is in general admissible if 
(2.4.1) holds only for a = 0. 

It is trivially true that the best invariant estimator is inadmissible if (2.4.1) 
is not valid for a = 0. If (2.4.1) is not true for a = 0 then Ro = x and the es- 
timator 6(x, y) 0 is better than the best inv est. 

We have been able to show by an example that if W(x) = [xl the condition 
a = 1 is the weakest condition of the type (2.4.1) under which it can be concluded 
that the best inv est, if unique, is always admissible. More generally we have 
shown that for W(x) =xXlk, k > 1, one must at least assume (2.4.1) with 
a > k/ (2 k- 1) > 0 in order to conclude that the best inv est is always admissible. 
(Note that k/(2k -1) = 1 if k = 1.) We do not know whether if the number of 
observationis from a set of independent identically distributed variables is n > 1, 
the best iv est is always admissible if (2.4.1) is valid for some a, 1 > a > 
k/ (2k _ 1). These results are collected in the following theorem in which the ran- 
dom variable Y is real-valued, and the notation pn does not refer to the previous 
definition (1.1.1). Pn as used in this section is defined by (2.4.3) below. 

THEOREM 2.4.1. In thefixed-sample-size case suppose the lossfunction is W(x) 

fXlk, k > 1. Let a be any number satisfying 0 < a < k/(2k - 1). Then there is a 
probability density such that the best invariant estimator 6(x, y) = x is uniquely 
determined, but is inadmissible. Furthermore 

(2.4.2) f (dy) f IxIaW(x)p(x, y) dx < o. 

PROOF. If k > 1, let 

pn(x, 1) = n/4 if 1-l/n < x < 1 + l/n 

(2.4.3) = n/4 if -1-l/n < x < -1 + l/n 

= 0 otherwise 

and let pn(x, y) = (1/y)p.(x/y, 1). Let Po(x, y) be the probability distribution 
which assigns probability I to each of the points +y and -y. Let ,(dy) = 

((f + k) ll+?+k) dy, 1 < y < , a < f < k/(2k - 1). The best invariant 
estimator is 6o(x, y) = x uniquely a.e. (A) for all n = O, 1, 2, ... . Let 
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(2.4.4) (x, y) = O if -y < x < y 
= x otherwise 

and y(x, y) = b(x, y) - x. 
The difference in the risks of these two estimators for a given value of n > 0 is 

(2.4.5) R( 5(02 o) - )(0, 6) 

= f~ (0 + k)/yl?I ?) dyJf (lx - 0k - l(x, y) - Glk)Pn(X - 0, Y) dX) 

= .f( ((i3 + k)/ ll++k) dyJf (jIZk - JZ + f'y(Z + 0, y) Ik ) pn(Z Y) dz} 

= f (03 + k)/yl?# k) dy{ykf (IZk - Jy(z + 0/y, 1) + Zlk)pP(z, 1) dz} 

= f (03 + k)/yl+') dyJf z+e,Y1<1 (jzjk - I-0/ylk)pn(z, 1) dz. 

For n = 1, 2, ... and J|pl < ?? define 

(2.4.6) g(n, (o) = fIz+ol <1 (jzj k- IOj)pn(Zk 1k) dz 

- J'lz+?o <1 (JJ ' 
k 

- koIk) dPo(z, 1). 

Note that for each fixed po 5 0, dt2, g(n, (o) 0 as n - oo, g(n, 0) -2 as 
n - >c, g(n, zt2) - - (1 2k). Also note that g(n, 0) = 0 for J|o > 3 and 
alln = 1,2, .. ;andjg(n,op)I < 2.3kforIso4 < 3andalln = 1,2, .Hence 

(2.4.7) f'l ((0 + k)/yl+') dyfl(z+o)/vIl ( lZlk- I0/yjk)pP(Zy 1) dZ 

=f(l ((0 + k)/yl+') dyfI(Z+e)/VI6j (IZik -I0/ylk) dPo(Z, 1) 

+ J'l ((0 + k)/yl+%)g(n, O/y) dy 

= J'( (0( + k)/yl +') dyfI(z+e) lIyl (IzIk - I0/ylk) dPo(z, 1) 

+ frmax(Q,1/O) ((3 + k)/0'vn' )g(n, 1/n) dn. 

f2 ( (f + k)/1) + o(l) if 0 =0 
_ -((, + k)/l# - 11lk) + o(l) if 0<J0J<2 

f 101 (03 + k)/yl+). - lo/ylk) dy + 0(1/I0I) 
(2t-1/0I)((fl + k)/fl - 2k) + o(1/J0J#) if 101 > 2 

as n- oo. 

f < k/(2k - 1) implies 03 + k)/ - 2k > 0. The o(1) terms in (2.4.7) are 
valid uniformly in 0. Hence (2.4.7) proves that for n sufficiently large R(n) (0, 60) 
-R(n) (,, 6) > 0 for all 0. Hence bo is inadmissible. Since a < 3,B (2.4.2) is satis- 
fied. This proves the theorem for the case k > 1. 

If k = 1, let 

pn(x, 1) =n2/(2 + 4n) if 1-1/n < x < 1 + 1/n, 

(2.4.8) or if -1/n2 < x < 1/n2, 

or if -1-1/n < x < -1 + 1/n 

= 0 otherwise. 
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This modification is necessary in order that the best invariant estimate be 
uniquely determined. The remainder of the computation is very similar to 
that given previously. It again turns out that a as defined by (2.4.4) is a better 
procedure than bo . This completes the proof of the theorem. 

2.5. Special results for W convex and n = 1. In the preceding section it was 
shown that, in the general fixed-sample-size case, some moment condition more 
than merely Ro < oo (a = 0 in (2.4.1)) must be assumed in order to prove that 
the best invariant estimator is admissible. In this section it is shown that there 
is a special case in which the assumption Ro < x is sufficient (and necessary) to 
insure that the best invariant estimator is admissible. This special case is the 
fixed-sample-size problem with sample size n = 1 (only the variable X is ob- 
served) and with convex loss function, W. 

As explained in Section 1.2 there is no loss of generality in assuming that the 
best invariant estimator is do(x) = x, and we shall do so throughout this section. 

Note that if W(x) is convex then W'(x) exists a.e.' If W(x) clx I as x -> 

ioo, k > 1, is convex then xW'(x) = O(W(x)) and W(x) = O(xW'(x)) as 
x -> = oo. Therefore in at least this case the following condition is equivalent to 
Ro < o0: 

(2.5.1) f IxW'(x)Ip(x) dx < oo. 

If for some a > 0, 

(2.5.2) f IW'(x ht a)Ip(x) dx < o 

as is, again, the case if W(x) _ 
C|Xlk k > 1, and Ro < oo then W can be differ- 

entiated under the integral sign and (since bo(x) = x) 

(2.5.3) f W'(x)p(x) dx = 0 

(see, for example, Farrell (1964)). 
For W(x) = x2 the following result coincides with a result of Stein (1959) 

specialized to n = 1. (Note that if W(x) = x2 and Ro < o then (2.5.1) and 
(2.5.3) are satisfied.) 

THEOREM 2.5.1. Suppose n = 1; and W is strictly convex, satisfies (2.5.1) and 
(2.5.3), and limx++oo W(x) = 0o; and bo(x) = x, and Ro < oo. Then the best 
invariant estimator is admissible. 

PROOF. Farrell (1964) has shown that bo is admissible if (and only if) it is 
almost admissible (with respect to Lebesgue measure on 0). Hence it is sufficient 
to prove that a0 is almost admissible. 

Now, assume that a0 is not almost admissible. Then there is a procedure, call 
it a, such that 

(2.5.4) R(0, a) < R(0, So) < oo; f[R(0, 6o) - R(0, 3)] dO > 0. 

Define y(x) = 6(x) - x and 

(2.5.5) ly*(x) = f y(x + t)p(t - a) di 

where a = -I Wp( ) dF $ i oo (since Ro < oo ). Also define 



1116 LAWRENCE DAVID BROWN 

6*(X) f 
r (X + (, p(~ S- a) 

(2.5.6) f[x + t + ly(x + S)]p(t - a) dA 
-x + 7*(x) 

Since W is convex 

R(0, a*) f f W(a*(x) - O)p(x -0) dx 

= f W(f (x + zy(x + S)-0)p(S - a) dS)p(x - 0) dx 

(2.5.7) ? 
rr W(x + 'Y(x + -O)p( - a)p(x - 0) dAdx 

= fr W(z + 'Y(z + 0 + )p(z)p(X - a) dzd 
= rfR(O + i, )p(U - a) dt ? Ro1. 

Thus 3* is at least as good as bo . Furthermore, using (2.5.4), 

[RoR(- , R *)] dO [Ro- R(0 + i, a)]p( - a.) dt dO 

(2.5.8) = Jf f[Ro - R(O + t, 6)] dO}p( - a.) dS 

> 0. 

Also, 

W(Y*(x) - a) W(f[,y(x + t) - a]p(t - a) dt) 

= W(f[y(x + t) + t - a]p( - a) dt) 

(2.5.9) f W(t - a + wy(x + t))p(t - a) dt 

- JW(z+-y(z +x + a))p(z) dz 

-R(x + a, 6) Ro . 

Since lim,-,+ W(x) = , (2.5.9) implies that there is a bound B < 0o such 
that fy*(x)j < B. 

As in (2.3.20), 

(2.5.10) f II<L [W(z) - W(z + 'y(x) )]p(z) dz <? 2 fz<L-y(x)W'(z)p(z) dz 

uniformly in x as L > o. Also as in (2.3.20), using (2.5.3), 

foJ dXSUP) sY: IBY I {j [W (z) W(z + y)]p(z) dz 

< J0dXSUPtzY: lI < B} If" y yW'(z)p(z) dz 

(2.5.11) - BJfJ dX f, W'(z)p(z) dz 

- +B f dXf z1>X W'(z)p(z) dzj 

- Bfo? df JzW>' ( W'zz(z) dZ dz 

= BJX zW'(z) IP (Z) dz < o 



ADMISSIBILITY OF INVARIANT ESTIMATORS 1117 

(2.5.11), of course, verifies that (2.1.2) is satisfied when the supremum is 
taken only over those y such that [y(x) I < B. The remainder of the proof of 
Theorem 2.5.1 is analogous step-by-step with the proof of Theorem 2.1.1. In 
view of the preceding, the proof may be begun as in Theorem 2.1.1 by assuming 
bo(x) = x and using a a such that R(O, 5) < Ro, and, in addition such that 
ja(x) -xl < B. Having done this, it follows that (2.5.11) may be used in the 
proof in place of (2.1.2). Also (2.5.10) and (2.5.1) may be used in place of 
(2.1.3). For example, in the analog of (2.1.8) to show that 

{ 
r-c 

dz 
Jz-L 

dx + 
712, 

dz 
JZ-L dx}c(z, x, y)p(z) -o 0 

use (2.5.10) to show that this is no larger than 

{r-co dz J z-Ldx + fCL/2 dz Jz-L dx}BW'(z)p(z) 

and then use (2.5.1) to complete the argument. As another example, the step 
after the second ? in the analog of (2.1.10) should read 2 f-L/2 BW'(z)p(z) dz 
+ f 2 dx f x (z, yo, 1, y(x -L), 1, y)p(z) dz. Use (2.5.1) to show the first 
term is bounded, and (2.5.11) to show the third term is bounded. Some similar 
changes must also be made in the analog of steps (2.1.12), (2.1.21), (2.1.22), 
and (2.1.23). 

It should be noted that strict convexity of W rather than just convexity has 
been used only to pass from the conclusion of almost admissibility to admissi- 
bility and to establish uniqueness of the best invariant estimator. Hence 

COROLLARY 2.5.1. Suppose n = 1; and W is convex, satisfies (2.5.1) and 
(2.5.3), and limx?c, W(x) = x; and suppose ao(x) = x is the unique best in- 
variant estimator, and Ro < x. Then So is almost admissible. 

PROOF. The proof is the same as the proof of the theorem from Equation 
(2.5.4) to the end. 

2.6. Summary of Section 2. In Section 2.1, we proved a theorem stating that, 
subject to certain assumptions, the best invariant estimator of a location param- 
eter is admissible. In Sections 2.2 and 2.3 we examined in detail the assumptions 
of Theorem 2.1.1 and showed that in the fixed-sample-size case these assumptions 
are very weak; but, on the other hand, they are not trivially satisfied. Lemma 
2.3.4 indicates that this is probably also the case in the general sequential prob- 
lem, although easily interpretable conditions are given there only for the special 
sequential problem (see Lemma 2.3.5). 

Let us examine here how the results of Section 2 relate to similar theorems 
given by other authors. 

In the fixed-sample-size case there are several previous results. Stein (1959) 
considered the case where W(t) = t2. The condition he gave for the best in- 
variant estimator (which, without loss of generality, is assumed to be bo(x) = x) 
to be admissible is 

(2.6.1) f (dy)[fx2p(x, y) dx]2 < Xo* 

Using Theorem 2.1.1 and Lemmas 2.2.1 and (2.3.3) we have the result that for 
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W(t) = t2 and n > 1 the best invariant estimator (3o(x) = x) is admissible if 

(2.6.2) f A (dy)x3p(x, y) dx < oo; 

and, using Theorem 2.5.1, if n = 1 the best invariant estimator is admissible so 
long as 

(2.6.3) fx2p(x) dx < oc. 

It is easy to see (using the Cauchy-Schwartz inequality) that when W(t) = t2, 

Stein's result contains ours when n > 1, and the two theorems are identical for 
n = 1. 

R. Farrell (1964) proved a theorem in which he extended Stein's results to 
other types of loss functions (and also proved admissibility of many estimators 
other than the best invariant estimator). He considered only loss functions 
satisfying the monotonicity condition (1.2.2), and which were either bounded, 
uniformly continuous, convex, or part bounded and part convex. His results are 
stronger than ours only if W is uniformly continuous, or part bounded-part 
convex and the support of , is one point (n = 1). For example, in the uniformly 
continuous case he requires 

(2.6.4) f lxl4W(x)p(x) dx < oo, 

while we require 

(2.6.5) f ixip sup,?2xW(r)p(x) dx < oo. 

In the part bounded-part convex case when n = 1 his theorem is also slightly 
stronger. If the support of , is more than one point our results are always stronger 
than his (since in that case his theorem assumes that p(*, *) has compact sup- 
port). 

Karlin (1958) and Fox and Rubin (1964), among others, have also treated the 
one-dimensional fixed-sample-size problem. Their results are weaker than ours 
if X, Y has a density. (Fox and Rubin also treat the non-absolutely continuous 
case-see the discussion in Section 1.2.) 

There seem to be no previous (non-trivial, correct) theorems concerning ad- 
missibility in the general sequential case. Part of the reason for this may be 
found by comparing our method of proof with the method used by Blyth (1951), 
Stein (1959), Farrell (1964), and others. Their proofs seem to require that one 
know the best invariant estimator and that one be able to determine Bayes es- 
timators for a sequence of a priori distributions. At least enough about the 
various estimators must be determined so that it can be computed that the 
difference between their Bayes risks tends to 0 sufficiently fast. (This is often 
done by proving that the Bayes estimator tends sufficiently fast pointwise to the 
best invariant estimator.) For the method of proof used in this paper no Bayes 
procedures are computed, and it is not necessary to know the best invariant 
estimator or its risk. (In fact, these are usually not known in the general sequen- 
tial problem.) Of course, Blyth's method is much more general than the method 
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used here. Our method cannot even be used without a significant modification to 
prove admissibility of the best invariant estimator in the case mn = 2 (see, Brown 
(1965)). 

It should be noted here that our method can also be used to prove admissi- 
bility of suitable generalized Bayes estimators of a location parameter (other 
than the best invariant estimator) although we have not pursued that topic in 
this paper. 

3. Results for m < 3. 
3.1. Inadmissibility of invariant estimates for convex loss functions and dimen- 

sion m ? 3. In the previous section it was shown that the best invariant estimator 
of a location parameter is usually admissible in dimension m = 1. An interesting 
phenomenon is that the situation is quite different in three or more dimensions. 
The case m = 2 will be treated in a separate paper (Brown (1965)). 

Only the fixed-sample-size problem (as defined in Section 1.1) will be con- 
sidered in Sections 3.1 to 3.3. The sequential case is discussed in Section 3.4. 

Stein (1956), (1960) considered the case where the loss function is W(t) = 

lltll2. He stated that if for each y,, * * , iYn_- among a set of values of Y1, * 
Yn-1 having positive ,u measure the co-ordinates XI, X2, * **, Xm have non- 
singular variance-covariance matrix, then the best invariant estimator of 0 is 
inadmissible. (Certain conditions concerning the finitemess of moments of X are 
also assumed.) 

In this section and in Section 3.3, we will show that inadmissibility of the best 
inv est when m _ 3 is a quite general phenomenon, not limited to the case dis- 
cussed above. 

In this section the case where W is convex will be considered. In Section 3.3 
this result will be extended to other loss functions. The two types of loss func- 
tions will be considered separately because the regularity conditions in the convex 
case are much simpler, and the assumptions are more nearly necessary (as well 
as sufficient). Thus we hope that this theorem will give more of an intuition into 
the situation than would Theorem 3.3.1 or 3.3.2. 

Although there are a few techniques which have been used successfully to 
prove admissibility of an estimate, there is essentially only one technique which 
has been used to prove that an estimator is inadmissible; namely, explicitly 
exhibit a better estimator. This is what I will do here. The estimator in all cases 
will be a generalization of the estimator a(x) = (1 - b/(a + lxfl2))x which 
was used by Stein. 

In what follows wherever possible capital letters will be used to denote matrices 
or vectors and lower case letters will denote scalars. (Exceptions to this will be 
the symbols W, R, and 6 which we have previously defined.) No distinction will 
be made in the notation between random variables and their values. 

In what follows vectors are understood to be column vectors except where 
otherwise stated. If M is a matrix (or vector) we denote its transpose by MT. 

If W(T, Y) is any scalar function of the vector T = (i1, t2, * , t,)T and of 
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Y (the argument Y will often be omitted), define the row vector 

(3.1.1) W'(T, Y) = (w1'(T, Y), w2'(T, Y), ... , wm(T, Y)) 
where 

w%'(T, Y) = (9/9tj)W(T, Y) if (9/9tj)W(T, Y) exists 
= 0 otherwise. 

In the applications (a/lt) W(T, Y) exists almost everywhere, and it really does 
not matter how W'(T, Y) is defined when (9/9ti) W(T, Y) does not exist. The 
value 0 has been chosen for convenience. 

Let g(T) be a scalar function of t such that g is of bounded variation in t1 for 
each fixed (t2, t3, *.. , tm). For each (t2, X * , tm) let d1g(T) denote the Le- 
besgue-Stieltjes measure generated by g considered as a function of the real 
variable t1 . More precisely, for each (12 X * * * , tm), dig( T) is the unique measure 
on the Lebesgue measureable sets of the real line such that g(T) = f'l?o d1g(T) 
almost everywhere (dt1). dkg(T), k = 2, * * , m, is similarly defined. Note that 
if g( T) is absolutely continuous as a function of t1 then dkg( T) - 

[(O9/Oitk)g(T)] dtk. 
Let Tk* denote (ti , , , tk , ,tm) 
We shall use the following simple result concerning change of variables and 

order of integration in the proof of Theorem 3.1.1. 
LEMMA 3.1.1. Let f( T) ( = f (t, T1*) be a probability density on Em . Let g(t, T1*) 

be a non-decreasing function of t for each T1*. Let 

(3.1.2) f dT1* f f(t + z, T1*) dig(t, T1*) = r(z) < oo a.e.(dz) 

for z?[0, a],a>O. 
Then r(z) is Lebesgue measurable, non-negative, and, for a > 0, 

(3.1.3) 0 ? f dTi* f [g(t, T1*) - g(t - a, Tl*)]f(t, T1*) dt 

= J'ar(z) dz< so. 

PROOF. Using the definition of dig(T) and Fubini's theorem, 

f dTi* f [g(t, Tl*) - g(t - a, Tl*)]f(t, T?*) dt 

= f dTi* f f(t, Ti*) dt fJa daigq(a, T?*) 

(3.1.4) = f dTi* J0o dig(ca, Tl*) fa+af(t, Tl*) dt 
= I dTi* f o d1g(a,) Tl*) Ja f(z + ax, Ti*) dz 

= Io dz f dTi* f00wf(z + a, Tl*) dig(a, Tl*) 

= for(z) dz. 

This proves the lemma. 
In Section 3.2 the implications of the assumptions in Theorem 3.1.1 will be 

discussed. (In particular, see Lemmas 3.2.1 and 3.2.2.) Some important special 
cases of Theorem 3.1.1 will also be considered. In Section 3.3 a result similar to 
Theorem 3.1, but without the requirement that W be convex, will be proved. 
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Let Ui be the unit vector in the ith co-ordinate direction. Let I be the (m X m) 
identity matrix. 

For any measurable function g, let Eo;y(g) = f g(X, Y)p(X - 0, Y) dX 
where Y = Y1, Y2, **, Yn-1. By convention, if n = 1, p(X -0, Y) = 

p(X - 0) for all Y. 
We will assume that the best inv est is Eo(X, Y) = X. This is no loss of gen- 

erality (see Section 1.2). We also assume throughout that Ro < cc. 
THEOREM 3.1.1. Consider the fixed-sample-size problem with m > 3, W(T, Y) 

convex in T for each Y, Eo(X, Y) = X, and Ro < oo. Suppose there is a set S of 
values of Y such that u( S) > 0, satisfying the following conditions: 

(i) For each Y c S there is a y > 0 and cl such that |3J < y implies 

(3.1.5) Eoy{ IIXII4IIW'(X + 3Uj, Y)II} < cl 

for 1 ? i < m. 
(ii) For each Y ? S there is a C2 > 0 such that 

(3.1.6) f f p(T + fUi , Y) (diwi'(T, Y)) dT* < c2 

for 0 < 3 < Y and 1 < i < m. 
(iii) For each Y c S, 

(3.1.7) Eoy(XW'(X) Y) ) 
is a non-singular matrix (m X m). 

Define the estimator e by 

(3.1.8) e(X, Y) = [I - A(Y)/(a(Y) + 11X112)]X if Ye S 

-X if YeS 

where A (Y) = (1/b(Y))Eoy(XW'(X))X'. Then there exist functions a(Y) > O, 
b( Y) > 0 such that R(0, e) < R(0, Eo) for all 0. (i.e. E is better than EO ; and, hence, 
EO is inadmissible.) 

PROOF. Pick any value Y c S. To shorten the notation let E = Eof , and W( T) 
= W(T, Y (and A = A(Y). Let Ji be the m X m matrix with entries (J)jk = 

ijk(=l onlywheni =j = k). 
Since W is convex 

d = Eo,i(W(Eo(X, Y) -0)) -Eo,p(W(e(X, Y) -0)) 

= Eo,yP{W(X - 0) -W([I- A/(a + I1XI12)]X -0)} 

= E{W(X) - W(X - A(X + 0)/(a + IIX + 0112))} 

(3.1.9) ? E{W(X) - (1/m) 

.E-t=, W(X-mJLA (X + 0)/(a + IIX + 0112))} 

? El T=1 W'(X -mJA (X + 0)/(a + IIX + 0112)) 

.JiA.(X + 0)/(a + IIX + 0112)1 

= E{T=j di} 
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where d and di are defined by the expressions given above (in (3.1.9)). Note 
that in a terminology similar to that of Section 2.2, d = R(Eo Y) - R(0, e I Y). 
The second inequality above follows from the fact that the directional deriva- 
tive along the line connecting X to X - mJiA(X + 0)/(a + IIX + 0112) is non- 
decreasing. 

For convenience, let JiA = Bi . 
Notice the equality 

1/(a + IIX + 0112) 

= 1/[(a + Z i2) + ( 2xi0i + Zxi2)] 

(3.1.10) = 1/(a + 0i2) - ( 2xi0i + X xi2) (a + E Z i2) 2 

+ ( 2xi0i + ZXi2)2/(a + E 0i2)2(a + E 0i2 + E 2x 0i 

+ Exi2). 
Using this, 

Edi = E{W'(X - mBi(X + 0)/(a + IIX + 0112)) 

Bi(X + 0)/(a + IIX + 0112)} 

= E{W'(X - mBi(X + 0)/(a + IIX + 0112)) 

Bi(X + 0)/(a + 110112) 

(3.1.11) - ( E (2xi0i + Xi2)) 

W'(X - mBi(X + 0)/(a + IIX + 0112)) 

Bi(X + 0)/(a + 110112)2 + ( Z (2xi0i + xi2))2 

W'(X - mBi(X + 0)/(a + IIX + 0112)) 

Bi(X + 0)/(a + 110112)2(a + IIX + 0112)} 

Notice that 

0jl(a + 110112) = (a-,) 
(3.1.12) (X + 0)/(a + x + 0112) = (a), 

0j0k/(a + 110112) = 0(1), 

where here as throughout the proof the o and 0 are uniform in 0 as a Co. 

Using (3.1.5) and (3.1.12), if b is chosen sufficiently large the expectation of 
the third term on the right in (3.1.11) and all of the second term except that 
part appearing below in (3.1.13) is o(l/(a + 110112)) uniformly in 0 as a x. 

(3.1.11) becomes 

Edi = E{W'(X - mBi(X + 0)/(a + IIx + 0112)) 

(3.1.13) Bi(X + 0)/(a + 110112) - ( E 2xi0i) 

w'(x - mB.i(X + 0)/(a + IIx + 0II2))Bi0/(a + 110112)2} 

+ o(l/(a + 110fl2)). 
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Since f IjW'(X + fUi)jjp(X, f) dX < oo, 

(3.1.14) (a/da3)f W(X + fUi)p(X, Y) dX 

= f (a/a3)W(X + #Ui)p(X, Y) dX 

exists for all jj3j < y. Then, since Eo(X, Y) = X, 

(3.1.15) f W'(X)p(X, P) dX = 0. 

Let A* = E(XW'(X))-' = (a*j) in order to define a = sup ja*jJ. Let 
= sup -(11011, a'). Note A = A*/b. A simple maximization yields 

(mBi(X + 0)/(a + |lx + oIl2))i < ma/2ba" 

for all X. Also, (mBi(X + 0)/(a + IIX + 0112))j = 0 if j # i. If IIXII < a/2, 

(mBi(X + 0)/(a + IIX + 0112))i < min (mi/2bal, 2ma/blOill) < 2ma/bo. 

If we now choose a so large that 2ma/bo- < y then, since wi'(T) is non- 
decreasing in ti, 

E{W'(X - mBi(X + 0)/(a + IIX + 0112))} 

f fiix11 <a/2 Wi'(X - (2ma/ub) Ui)p(X, Y) dX 

(3.1.16) + f 1X ?/2 Wi'(X - (ma/2ba1)Ui)p(X, Y) dX 

> f [wi'(X - (2ma/bg) Ui) - wi'(X)]p(X, P) dX 

- f 11X 11 /2 Wi' (X - (2ma/bo-) Ui)p(X, Y) dX 

+ f 11X 1 /2 wit (X - (ma/2ba") Ui)p(X, Y) dX 

using (3.1.15). Since E{lIIXIIIW'(X - Ui)II} < oo for f < y, the last two 
terms on the right of (3.1.16) tend to 0 as a -+ o, uniformly in 0. Using the 
above and (3.1.6) and Lemma 3.1.1, 

E{W'(X - mBi(X + 0)/(a + IIX + 0112))Bi0} 

(3.1.17) _ -c2(2ma/bo) Bi0 + o(1) 

> -c2(2ma/ba) axo-b + o (1) = -2c2ma2 /b2 + o(1) 

= -k/b2 + o(1) where k = 2c2mxx2. 

From (3.1.5) and (3.1.12) (or from (3,1.16)) 

(3.1.18) E{wi'(X - mBi(X + 0)/(a + IIX + 0112))xj} -E{wi'(X)x,} 

uniformly in 0, i, j as a - oo. 

Applying (3.1.16) and (3.1.17) to (3.1.13) yields 

(3.1.19) Edi ? E{(W'(X)BiX - k/b2)/(a + 110112) 

- W'(X)BiO(, 2xi0i)/(a + 110112)2} + o(l/(a + 110112)). 

Now note that if C = (cij) is any (m X m) matrix 
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(3.1.20) E{W'(X)ACX} = E (trace (XW'(X)AC)) = 1/b trace C. 

Hence, 

d = El , di > E{ (W'(X)AX - mk/b2)/(a + 110112) 

- W'(X)A0(E 2xi0i)/(a + 110112)21 + o(l/(a + 110112)) 

> (1/(a + 11012) )2E{a(W'(X)AX - mk/b2) 

(3.1.21) + W'(X)A(j1Oj12I - 20. 0r)X - mkll0112/b2} 

+ o(l/(a + 110112)) 

= (1/(a + 110112))2 [a(m/b - mk/b 2) 

+ l/b trace (110112I - 20. T) - mkflJ112/b2] 

+ o(l/(a + 110112)). 

If b and then a are chosen sufficiently large, 

d > (1/(a + 110112))2[a(m/b - mk/b2) 

(3.1.22) + (l/b)(m - 2) 110112 - mklI1I12/b2] + o(l/(a + 110112)) 

> '(1/b)/(a + 110112) > 0. 

This proves that for each Y E S there are constants a(Y) > 0, b(Y) > 0 
such that d(Y) > 0. Now, 

R(0, Eo) - R(0, E) 

(3.1.23) = fg4(dY) f [W(cEo(X, Y) - 0, Y) 

- W(E(X, Y) - 0, Y)]p(X - 0, Y) dX 

= fsd(Y)1.(dY) > 0. 

This completes the proof of the theorem. 
Note that the dimension, n, plays its decisive role only in the last step, (3.1.22), 

of the proof ! 
It is important to notice that the choice of a and b in Theorem 3.1.1 depends 

on w and f only through certain constants which appear in Theorem 3.1.1, and 
in no other way. A weak result of this type is specifically stated below. 

COROLLARY 3.1.1. Suppose the hypotheses of Theorem 3.1.1 are satisfied. Let 

Uk(Y) = supjjj<-yji<i<m1 Eoy{||X|IkW (X - #U,),. 

Define y, c2, a as in (3.1.5), (3.1.6), and (3.1.16) respectively. Then there is a 
b(Y) depending only on c2, M, and a; and an a(Y) depending only on ay, a, b, 
and ?k, k - 1, 2, 3, 4, such that the estimator a given by (3.1.8) for these values 
of a and b satisfies R(0, 3) < R(0, bo) for all 0. 

PROOF. From (3.1.22) it can easily be seen that it is sufficient to choose b 
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large enough so that (m - 2)/b - mk/b2 > 3/4b. Thus the choice of b only 
depends on m and k; or m, C2, and a. After b has been chosen, a need be chosen 
only large enough so that the term o(1/(a + 110112)) in (3.1.22) is less than 
(1/4b)(1/(a + 110112)). This o( ) term is made up of contributions from the 
error terms in (3.1.13) and (3.1.17). It can be checked that the size of these 
error terms depend on at most the constants y, a/b, and 0fk, k = 1, 2, 3, 4. 
(It is not clear that the error terms really depend on all the 0-k .) This completes 
the proof of the corollary. 

It would be of interest to determine exactly how small a and b can be chosen. 
We have not done this. 

Although we have not usually considered in this paper random variables which 
do not possess densities, Theorem 3.1.1 generalizes so easily to some such cases 
that we will state the following corollary: 

COROLLARY 3.1.2. Suppose the distribution of X given Y is P(X - 0, Y), 0 
unknown; X, 0 E Em, m > 3. Suppose Eo(X, Y) = X is a best invariant esti- 
mator. Let W(T, Y) be convex in T for each Y. Suppose (3.1.5) and (3.1.7) are 
satisfied. Replace (3.1.6) by the assumption that wi'(T, Y) is absolutely continu- 
ous as a function of t, for all i and Ti*, and, for each Y E S, 

(3.1.24) f (a/4ti)wi'(T, Y) diP(T + fUi, Y) < c2, 1 < i < m. 

Then there is an a and b such that a defined by (3.1.8) satisfies R(0, e) < R(0, bo) 
for all 0. 

PROOF. For the most part the proof of the corollary is the same as the proof 
of the theorem, with the sole exception that p(X - lUi, Y) dxi must be re- 
placed wherever it occurs by diP(X - AUi, Y). In making the transition from 
(3.1.16) to (3.1.17), however, one must do a little more. It can easily be verified 
that there is a version of Lemma 3.1.1 which is appropriate for making this 
transition if the condition (3.1.6) is replaced by (3.1.24). When this is done, 
the proof of the corollary is complete. 

3.2. Examples and lemmas concerning the assumptions of Theorem 3.1.1. There 
are four major assumptions in Theorem 3.1.1 whose meaning and/or signifi- 
cance should be discussed. These are the assumptions that W is convex, and the 
assumptions (3.1.5), (3.1.6) and (3.1.7). Section 3.3 will be primarily concerned 
with the first of these. Some of the results of this section can also be generalized 
to non-convex W. 

Of the remaining three assumptions, (3.1.5), that is 

(3.2.1) f IIXI1411W'(X -_ Ui)llp(X, Y) dX 

is the simplest and probably the least significant. By being more careful in the 
transition from (3.1.11) to (3.1.13) the IJXjI4 can be replaced by an JJXJ13. It 
seems reasonable to conjecture that 30 remains inadmissible even if (3.1.5) is 
not satisfied, and perhaps even that an estimator of the form of 6, (3.1.8), 
remains better than 3o . The heuristic argument that 3o is less likely to be admis- 
sible as p becomes more dispersed (as in Section 2.4) would seem to support this 
conjecture. 
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Some assumptions at least resembling (3.1.6) and (3.1.7) are necessary. 
We will show this by examples later in this section. First, however, it will be 
shown that these assumptions are satisfied in many statistical situations. In 
most of this section we are interested only in the situation for a fixed Y e S; 
we therefore write only W(T), not W(T, Y). 

If each wi' is a differentiable function of ti then diwi'( T) = (O/Ot))wti( T) dti. 
In general wi' will be differentiable with respect to ti only almost everywhere 
and the measure diwi'(T) will have a singular part, say oi(dti, Ti*) (where 
Tj* = (t1, ... , ti, ti+1, * **, t.)) concentrated on a set of measure 0. The 
following lemma gives a sufficient (but not necessary) condition for assumption 
(3.1.6) to be satisfied. 

LEMMA 3.2.1. Let diwi'(T) = (O/Otj)wj'(T)dtj + ai(dti, Ti*) where a, is a 
singular measure. Suppose there exists c3 such that 

(3.2.2) f p(T + 3Ui , Y) (O/Oti)wi'(T) dti dT* < C3 

for all 0 < 1 < y, 1 < i ? m. Suppose either aii(Em) = 0 or p(*, Y) is bounded 
and there is a c4 such that f ai(dti, T*) ? C4 for each Ti*, 1 < i 9 m. Then 
assumption (3.1.6) is satisfied, i.e. there is a c2 such that 

(3.2.3) f p(T + 3Ui , Y) diwi'(T) dT* < c2 

for 0 <13 <y,J1 i < m. 
PROOF. Substitute (O/Oti)wi(T) dti + ai( dti, IT*) for diwi'(T) in (3.2.3). 

Use the linearity of the integral, and choose C2 = c3 + C4 supT p(T, Y) if ai(E") 
> 0, or c2 = c3 if oj(E,) = 0. Then (3.2.3) will be satisfied. 

The condition (3.1.7) (that is, Eoy(XW'(X)) non-singular) appears to be 
much deeper than (3.1.5) or (3.1.6). It is connected with the dimension of the 
random variable X, but it also is dependent on the relation between X and the 
loss function W. For the statistical situations which are described in the follow- 
ing lemma, we have succeeded in proving that (3.1.7) is satisfied. In these situa- 
tions the conditions on W are such that (3.1.7) is satisfied as long as X given Y 
is a true (non-degenerate) m-dimensional random variable. In general, it is 
not sufficient to assume merely that X is non-degenerate; see Examples 3.2.3 
and 3.2.4. 

In the lemma below non-degeneracy is automatically implied by the assump- 
tion that X given Y has a probability density with respect to Lebesgue measure 
on Em. The results of the lemma can be immediately generalized to the case 
where X does not possess a probability density so long as the distribution of X 
given Y is non-degenerate (i.e. is not supported on any set of Lebesgue measure 
0 in Em). 

The expectation operator Eoy is defined above Theorem 3.1.1. 
LEMMA 3.2.2. Suppose eo(X, Y) = X, Ro < Xo, and 

(3.2.4) f IIXIIIIW'(X - 1Ui)jIp(X, Y) dX < c < X 

for all 1131 < y (y > 0), 1 9 i < m. Suppose either 
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(a) W(T) = g((T - To)TA(' - T0)) where To is a fixed vector; A is 
symmetric positive definite; and g( r) is a non-negative function, differentiable for 
almost all r > 0, g' (r) > 0, and for all Y E S (with ,u(S) > 0). 

(3.2.5) fv p(X Y) dX > 0 

where V = g: ((T-To)A(T - To)) > O}; 
(In particular, if g'(r) > 0 for almost all r, (3.2.5), is satisfied.) 
or 

(b) W(T) = >i?== h,(ti) where each hi is a convex function whose derivative 
hi'(-r) (which exists a.e.) is zero for at most one value of r and 

p(T, Y) = fl;n=1 p-(t , Y). 

PROOF. As before, let E(.) = Eoy(.) for a fixed Y E S. The assumption 
(3.2.4) guarantees that E(XW'(X)) exists, and also (as in (3.1.15)) that 
E(W'(X)) = 0. 

For case (a), note first that 

E(XW'(X)) = E((X - To)W'(X)). 

Also, note that 

W'(X) = 2(X - To)A g'((X -To)A(X- To)). 

Hence, 

(3.2.6) E(XW'(X)) 

= 2E{(X - To)(X - To)qg'((X -To))A(X -To))A. 

Since the matrix in braces on the right of (3.2.6) is positive semi-definite, it 
follows that its expectation must also be positive semi-definite. 

According to (3.2.5) the vectors of V span the space Em . Thus the expecta- 
tion on the right of (3.2.6) must be strictly positive definite. Hence its product 
with A is non-singular; which is the desired result. 

For case (b), since E(W'(X)) = 0, E(hj'(xj)) = 0. Thus E(xihj'(xj)) = 0 
if i 7 j. 

Define ti by hj'(ti) = 0. By assumption, 1. is uniquely determined. Now, 

(3.2.7) E(xihi'(xi)) = E((xi -ti)hi(xi)). 

The integrand on the right of (3.2.7) is positive almost everywhere. Hence, 
E(xihi'(xi)) > 0, i = 1, 2, *., m. Therefore E(XW'(X)) is a diagonal 
matrix with positive terms on the diagonal, hence non-singular. 

This completes the proof of Lemma 3.2.2. 
We shall now give several examples. The first few of these will exhibit com- 

monly occurring situations in which Theorem 3.1.1 is valid. The remaining ex- 
amples will give some situations in which the conclusion of Theorem 3.1.1 is 
false, either because (3.1.7) is not satisfied or because (3.1.6) is not satisfied, 
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EXAMPLE 3.2.1. If W is "squared loss," i.e. W(T) = 1IT 12 = > ti2, then 
the appropriate form of Stein's estimator, (3.1.8), is better than the best in- 
variant estimator if the moment condition (3.1.5) is satisfied. This result was, 
of course, considered by Stein (1956), (1960). Note also that it is not necessary 
for the distribution of X given Y to possess a density; it is only necessary that 
it be non-degenerate. (A minor modification of Lemma 3.2.2 will prove this 
last fact.) 

EXAMPLE 3.2.2. Some other reasonable loss functions (or, "measures of dis- 
tance") are W(T) = JITIJ, W(T) = E itil. (While we have not been able to 
verify in general for the last of these that (3.1.7) is satisfied, Lemma 3.2.2 will 
suffice for the following situation.) Suppose the co-ordinates x1, X2, *..., Xm 

of X are independent identically distributed random variables with probability 
density f. Suppose f is bounded. (Some assumption of this type is necessary in 
order that (3.1.6) be satisfied.) And suppose f y4f(y) dy < o? (so that (3.1.5) 
is satisfied). Then if W is any one of the two forms listed above there is an 
appropriate version of Stein's estimator which is better than the best invariant 
estimator. 

The next two examples exhibit situations in which the conclusion of Theorem 
3.1.1 is invalid because (3.1.7) is not satisfied. In a sense they are both trivial 
exceptions to the theorem, but we do not know of any significantly different 
situations in which (3.1.7) is not satisfied. 

EXAMPLE 3.2.3. Let m _ 3. Suppose W(T) = w(ti) for some i or, more 
generally, suppose there is an orthogonal transformation B such that if U = 
BX, W(X) = c(ul). Then the rank of Eoy(XW'(X)) is one, and the problem 
becomes a one dimensional estimation problem-namely that of observing 
(ui + ot1, Y), i = 1, 2, ... , m, and estimating 61 (ip = UO) with loss func- 
tion w. The variables U2 + 02 , * * * , Un + O;m in this case are "nuisance" vari- 
ables. The question of admissibility of bo in such a case is probably not easy to 
settle, see Stein (1960). However, if ul is independent of (u2, ***, Um) then 
60 can often be shown to be admissible as follows: 

Suppose 6 is better than bo . Then (by translation) there is a 6 which is better 
than 60 and has smaller risk for some 61 and (0P2 , * * Jm) =(0 * * 0). 
Since U2, * * *, ur are independent of ul, 6' is a randomized estimator of 61 (given 
('2, ... , * I'm) = (0, ... , 0)). It follows from the discussion in Section 1.3 
that if the hypotheses of Theorem 2.1.1 are satisfied, 6' cannot be better than 
30, a contradiction. Similar remarks are valid if W(T) = c(ti, tj), etc., using 
Brown (1965). 

To summarize, suppose there is some co-ordinate system in which the follow- 
ing is true. W(T) = cA(ti) and, for fixed i and Y, Xi is independent of Xk, 
k 7 i. Suppose further that the hypotheses of Theorem 2.1.1 are satisfied for 
the problem where Ok = 0, k - i, and Oi is unknown. Then the best invariant 
estimator (o is admissible. 

In the previous example one might say that the structure of W reduced the 
problem to one dimension. If the restriction that X have a probability density 
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in Em is removed similar examples can be constructed where X is essentially one- 
dimensional, and the best inv est is admissible. In the next example neither W 
nor X are by themselves essentially one-dimensional, yet the best inv est is easily 
seen to be admissible. 

EXAMPLE 3.2.4. Suppose m > 3, n = 1 (i.e. only X is observed), and 

W(T) = 0, JJTIJ < 1, 

(3.2.8) > 0, 11TI > 1; 

p(X) > 0, jixIl ? 1, 

= 0, lixil > 1. 

Then it is easy to see that R(6, o)- 0. Hence the best inv est is admissible. 
In addition, if a is any estimator different from bo on a set of positive measure 
then R(0, 6) > 0 for some 0. Hence bo is the (essentially) unique best inv est 
even though m _ 3. 

The situations of Examples 3.2.3 and 3.2.4 can be combined to give slightly 
more general examples. 

In the following example only assumption (3.1.6) of Theorem 3.1.1 is not 
satisfied, and the conclusion of that theorem is false. In this example we do not 
know whether the best inv est is admissible. 

EXAMPLE 3.2.5. Let m = 3, n = 1, and 

(3.2.9) p(X) = 1/87r lXII152 iXII < 1, 

= 0, llXfl > 1, 

and let W(T) = IITI). Since both p and W are spherically symmetric, it can be 
shown as in Stein (1960) that if bo is inadmissible, then there is a spherically 
symmetric estimator which is better than 50. In particular, if &' is a version of 
Stein's estimator, (3.1.8), which is better than 60, then there is an estimator a 

of the form 

(3.2.10) 6(X) = X(1 - b/(a + IJXI12)) 

which is also better than 6o. ((3.2.10) is the estimator originally considered by 
Stein.) It can be computed that assumption (3.1.6) is not satisfied in this ex- 
ample (although (3.1.5) and (3.1.7) are), and that 

R(0, bo) - R(0, 6) = -8irfl6jIjb/(a + 116112) + O(1/(a + 116112)) as 

0 -> oo. 

Hence the conclusion of Theorem 3.1.1 is false in this example; that is, no ver- 
sion of Stein's estimator, (3.1.8), is better than the best inv est. 

Although we do not know whether the best inv est is admissible in the pre- 
ceding example, it is possible (using W(T) = TIf and an X such that Pr{X = 
0} > 0) to construct an example where m 3, assumptions (3.1.5) and (3.1.7) 
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are satisfied and yet the best inv est is admissible. We shall not give the details 
here. 

It is possible to construct analogues of Example 3.2.5 for the other loss func- 
tion given in Example 3.2.2. 

3.3. Inadmissibility of invariant estimates for non-convex loss functions and 
dimension in _ 3. Here it is again the case that subject to certain assumptions 
there is a version of Stein's estimator which is always strictly better than the 
best invariant estimator. Both the statement and proof of Theorem 3.3.1 are 
very similar to the statement and proof of Theorem 3.1.1. In view of this sim- 
larity, a few of the details have been omitted from the proof of Theorem 3.3.1. 
Theorem 3.3.2-which is designed primarily to treat the case of discontinuous 
W-introduces a few new complications. 

In the theorems below we have not attempted to state the regularity conditions 
in their weakest possible form, but have left them in a fairly weak form which 
has the advantage of being easy to state. (It is probable that in some of the con- 
ditions the phrase, "twice continuously differentiable" may be replaced by, 
"possessing a derivative having bounded variation"; and [(d&/atjdtk)W(T)]dt 
may be replaced, as in (3.1.6), by djwk' (T)-see above Lemma 3.1.1 for the 
definition of dWk'( T).) 

It will be convenient to write (a2/atjatk)W(T, Y) = w'k(T, Y), and W (T, 
Y) = (wi'k(T, Y)), an vm X m matrix. As in Section 3.1, observe the conven- 
tion that if n = 1, p(X - 0, Y) = p(X - 0) for all Y. Eoy and W'(T) are 
defined above Theorem 3.1.1. 

THEOREM 3.3.1. Consider a fixed-sample-size problem with m > 3, Eo(X, Y) = 

X, and Ro < oc, in which all the second derivatives W'k of W exist and are con- 
tinuous in T. Suppose there is a set S of values of Y with ,u(S) > 0 satisfying 
the following: 

(i) For all Y e S, 

(3.3.1) Eoy{jJXJJ4flW'(X, Y)fl} < cc; 

(ii) For all Y e S there is a y > 0 and a c such that 

(3.3.2) EoYIIIXtI2lw"" (X + G(X), Y)J} < c < oo 

for all functions G(X) such that flG(X)J < Ky, 1 _ j, k _ m. 
(iii) For each Y E S, 

(3.3.3) Eoy(XW'(XI Y)) 

is a non-singular (m X in) matrix. 
Define the estimator E (as in Theorem 3.1.1) by 

(3.3.4) E(X, Y) = (I - A(Y)/a(Y)flXJJ2)X if Y E S 

=X if YeSy 

where A(Y) = (1/b(Y))Eoy(XW'(X Y))-'. Then there exist functions a(Y), 
b(Y) such that R(O, E) < R(O, EO) for all 0. 
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PROOF. Let Y E 8, E(.) = Eoy(*), and W(T) = W(T, Y) and A = A( Y). 
Using Taylor's theorem in m dimensions, 

d = Eoj:{W(Eo(X, Y) -0) - W(E(X, Y) - )} 

= E{W(X) - W(X - A(X + 0)/(a + IIX + 1l12))} 

(3.3.5) = E{W'(X) -A (X + 0)/(a + IIX + 0112) 

- -(A .(X + 0)/(a + IIX + 6II2))rW"'(X + G(X))(A (X 

+ 0)/(a + IIX + 0112))} 

where JIG(X) II IIA (X + 0)/(a + lix + 6112)1I ? kl/a2 for some ki < oo. Or 
is the matrix, or vector, transpose operator.) 

In view of (3.3.1), (3.3.2), and the fact that Eo(X, Y) = X, E(W'(X)) = 0. 
Using this, (3.3.1), and the equality (3.1.10) as in Theorem 3.1.1, the first 
term on the right of (3.3.5) becomes 

(3.3.6) EtW'(X)AX/(a + 110112) - (Z2x i ) W'(X)A6/(a + 110112)} 

+ o(l/(a + 110112)). 

In order to treat the second term in the expectation on the right of (3.3.5), use 
the inequality 

(3.3.7) (1/(a + IIX + 011))2 > (1/(a + 110112))2 

- 2(ZE xi6 + E xi2)/(a + 10112)2 (a + IIX + 0112). 

If this inequality is applied to that term and orders of magnitude are computed 
using (3.3.2) and the (trivial) inequalities (3.1.12) the resulting term is greater 
than 

(3.3.8) -(n 2a 2#c/b2)/(a + 110112) + o(l/(a + 110112)) 

where a = supj,k (E{XW'(X)} ') jk and j3 - supj,k Et w"' (X) }. Hence 

(3.3.9) d > EtW'(X)AX/(a + 110112) - (E2x6i)W'(X)A0)/(a + 110112)2} 

- (k2/b2)/(a + 110112) + o(l/(a + 110112>. 

As in (3.1.21) and (3.1.22) if a and b are chosen sufficiently large 

(3.3.10) d ? 1(1/b)/(a + 110112) > 0 

for all 0. This implies that if a( Y) and b( Y) are chosen sufficiently large R (0, E) < 
R(0, EO). 

This completes the proof of the theorem. 
There are some important cases in which the hypotheses of Theorem 3.3.1 are 

not satisfied. The most notable of these is the case of fixed-size confidence set 
estimation. In that case W is a 0-1 function, and hence is not even continuous, 
let alone twice differentiable. The following theorem is designed to treat that 
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case. By using a type of duality argument, the regularity conditions of Theorem 
3.3.1 on W are shifted to p and so become in Theorem 3.3.2 analogous conditions 
on p. As was previously the case, the regularity conditions in Theorem 3.3.2 are 
not the weakest possible. 

Define p'(., Y) and p"(., Y) from p(., Y) in the same way as W'(.) and 
W"( () were defined from W. (p' and p" are row-vector and matrix-valued func- 
tions respectively.) 

THEOREM 3.3.2. Consider the fixed-sample-size problem with m > 3, Eo(X, Y) = 

X, and Ro < cc. Suppose there is a set S with ,u(S) > 0 such that 
(i) for each Y E S all the second partial derivatives p'ik(., Y) exist and are 

continuous; 
(ii) for each Y E S, 

(3.3.11) f W(X, Y)IIXIj4Jjp'(X, Y)II dX < cc; 

(iii) for each Y E S there is a y > 0 and a c > 0 such that 

(3.3.12) f W(X, Y)IlXll2lpi(X + G(X), Y)J dX < c 

for all G(X) such that jjG(X)II < y, 1 < j, k < m; 
(iv) for each Y E S the m X m matrix 

(3.3.13) M(Y) = f W(X, Y)lXp'(X, Y)} dX - Eoy(W(X, Y)) 

(which exists as a consequence of (3.3.11)) is non-singular. 
Define e by 

(3.3.14) E(X, Y) = (I + B(Y)/(a(Y) + IIX112))X if YES 

=X if Y,fS 

where B(Y) = (1/b(Y))M(Y)7'. Then there exist functions a(Y), b(Y) such 
that R(0, e) < R(0, eo) for all 0. 

NOTE. The reader may check, using integration by parts, that M(Y) = 

-Eoy(XW'(X)) if W is smooth enough. In that case (3.3.14) is the same as 
(3.3.4). 

PROOF. Let f E S, B = B (Y) etc., and 

(3.3.15) Z = X + B (X + 0)/(a + IX + o112) = H(X). 

It is not hard to check that for all a sufficiently large (1) H is 1-1 and continuous, 
(2) H-' is continuous, (3) all partial derivatives of H and H-1 exist and are 
continuous. (a > n2(sup bij) is large enough.) Thus 

(3.3.16) f W(X + B.(X + 0)/(a + liX + Il12))p(X, Y) dX 

- r W(Z)p(H-'(Z), Y)Idet JH(z)I-' dZ 

where JH(Z) is the Jacobian of the transformation H, and W(X) = W(X) - 

Eo0(W(X)). 
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Recall that B* (X + O)/(a + lIx + 6112) = O(a-i). Hence 

Hl'(Z) = X = Z - B.(X + 0)/(a + lIx + 0112) 

(3.3.17) = Z - B.(Z + O)/(a + lIZ + 0112) 

+ 0(a-"/(a + lIZ + 0lj2) 

It can also be computed that 

(3.3.18) det JH(Z) = 1 + 0(l/(a + lIZ + 0112)). 

Thus, using the above, 

f W(X + B(X + 0)/(a + IIX + 0112))p(X, Y) dX 

(3.3.19) = (1 + 0(1/a)) f [wJ(Z)p(Z - B*(Z + 0)/(a + IIZ + o112)), f) 

+ O(a-'/(a + lIZ + 0112))1jp'(Z, Y)l 
- 

+ 0(1/a(a + IIZ + 0112))Ilp (Z + G(Z), Y)ll] dZ. 

Using (3.3.11) and (3.3.12) as in the proof of Theorem 3.3.1 verifies that the 
last two terms in (3.3.19) are 0(1/(a + 110112)). We shall skip the details. This 
gives finally 

d= f W(X)p(X, Y) dX 

- f W(X + B.(X + 0)/(a + IIX + 0112))p(X, P) dX 

= f W(Z){p(Z, Y) - p(Z - B*(Z + O)/(a + JJZ + 0 II2), Y)}dZ 

(3.3.20) + 0(1/a) f WVi(Z)p(Z - B.(Z + 0)/(a + lIZ + o f2), Yf)dZ 

+ o(l/(a + 110112)) 

= {f[p(Z, F) - p(Z-B - (Z + 0)/(a + |IZ + 0112), F)]T(Z) dZI 

(1 - 0(1/a)) + o(l/(a + 110112)). 

The integral on the right of (3.3.20) is the same as (3.3.5) with the roles of W- 
and p(, Y) interchanged. Also the conditions of Theorem 3.3.2 are those of 
(3.3.1) with the roles of W and p(, Y) interchanged. (It is of course not true 
that W ? 0 or that fI jI(z) j dZ < oo, but it can easily be checked that in the 
proof of Theorem 3.3.1 only f |W(Z) I p(Z, Y) dZ < oo and the fact that p is 
bounded below has been used; f p(X, Y) dX < oo has not been used!) Similarly 
the estimator (3.3.14) is the same as the estimator (3.3.4) with the roles of p and 
W interchanged. Thus just as in the proof of Theorem 3.3.1 for a(Y) and b(Y) 
chosen sufficiently large d ? '(1/b)/(a + 110112) > 0. This then implies R(0, E) < 
R(0, e0) if a(Y) and b(Y) are properly chosen. 

This completes the proof of the theorem. 
3.4. Summary, and remarks concerning the general sequential case. In Sections 

3.1 and 3.3 we have shown that for m ? 3 the best invariant estimator is inad- 
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missible, subject to certain assumptions. The assumptions regarding convergence 
of moments and smoothness (i.e. (3.1.5) and (3.1.6), or (3.3.1) and (3.3.2)) 
can be easily interpreted, and are of a fairly mild nature. It appears likely that 
the remaining assumption (concerning non-singularity of the matrix (3.1.7) or 
of (3.3.3)) is usually, or always, satisfied if the problem is a non-degenerate 
problem in m _ 3 dimensions. However, we have only been able to prove that 
this non-singularity condition is satisfied in certain important special cases (see 
Lemma 3.2.2). The results given in this paper generalize those of Stein (1956), 
and Farrell (private communication). 

While the previous theorems deal only with the fixed-sample-size case, the 
results can also be applied to the general sequential problem. Suppose the best 
invariant estimator is 6o = (yo, ,o). Define X = X, Y = Y1, Y2 ... * Y, Y)-l 

(where Y = (Y1, Y2, ) )and W(t, y) = W(t, uo(y), y). If for a set of values 
of Y having positive , measure the hypotheses of Theorems 3.1.1, 3.3.1, or 3.3.2 
are satisfied then 60 is inadmissible. Further details are included in the following 
theorem, which is the sequential analog of Theorem 3.1.1. Similar analogs of 
Theorems 3.3.1 and 3.3.2 are also valid. 

Given So = (-yo, co), define 

(3.4.1) Eo,y(f) = f f(X, Y)p,o(y)(X - 0, Y) dX 

where pn is defined in (1.1.1). Thus Et y(f) is the expected value of f when 6 is 
the true parameter value given that Y = Y1,, Y2, *.* , YGO(Y)-l . Let a, denote 
the sub a-field of Gt' induced by Y. 

THEOREM 3.4.1. Suppose W(T, Y) is convex in T for each Y, m > 3, and 
Ro < oo. Suppose there is a set S E a, of values of Y such that ,u(S) > 0 satisfying: 

(i) For each Y E S there is a -y > 0 and cl such that 101 < y implies 

(3.4.2) Eo,{ I1X -_ yo(Y) 1141IW (X - o(Y) + #Ui Y)II} < cl 

for 1 < i < m. 
(ii) For each Y E S there is a c2 > 0 such that 

(3.4.3) ffp,o(Y)(T + 3Ut, Y)(d'tiw'(T - yo(Y), Y) dTi* < C2 

for 0 < A < y and 1 ? i < m. 
(iii) For each Y e 5, 

(3.4.4) Eo, (X - o(Y))W'(X - (Y), o )} 

is a non-singular matrix (m X m). 
Then Bo is inadmissible. 
PROOF. Using Theorem 3.1.1 for each Y E S there is an estimator E(X, Y) 

such that Eo, IW(E(X, Y) - 0, Y)} < Eo,,IW(Eo(X, Y) - 0, Y)} for all 0. 
Since the conditions (3.4.2), (3.4.3), and (3.4.4) depend only on Y1, *,- 
Ylo(y) and since S E a, X if we let 6(x, y) = (E(x, y), cro(y)) if y E S and 6(x, y) = 
(eo(y), oro(y)) otherwise, then 6(x, y) is an estimation procedure (satisfying 
(1.1.3)); and a is better than 6o. This completes the proof of the theorem. 
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This theorem indicates that even in sequential cases 6o is usually inadmissible 
if m > 3. In specific cases, it is usually difficult to verify whether the hypotheses 
of Theorem 3.4.1 are satisfied. However in the case of square error this is not 
true. The following corollary gives the result. 

COROLLARY 3.4.1. In the special sequential problem, suppose W(T, n) = 

TII2 + W2(n) where W2(n) increases to cc as n - cc . Suppose 

(3.4.5) f lITKI'f(T) dT < oo. 

Then 6o is inadmissible. 
PROOF. Let S = {Y}, W(T, Y) = W(T, ao(Y)). Using Lemma 3.2.1, con- 

dition (3.4.3) is satisfied. Using (3.4.5), and the Martingale stopping theorem, 
Doob (1953), p. 300, (3.4.2) is satisfied. Then, using Lemma 3.2.2, (3.4.4) is 
satisfied. This completes the proof of the corollary. 
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